
GDMA: Fully Automated DMA Rehosting via Iterative Type Overlays

Tobias Scharnowski, Simeon Hoffmann, Moritz Bley, Simon Wörner, Daniel Klischies1,
Felix Buchmann, Nils Ole Tippenhauer, Thorsten Holz, and Marius Muench2

CISPA Helmholtz Center for Information Security
1Ruhr-Universität Bochum, 2University of Birmingham

Abstract
Embedded systems are the critical interface between the phys-
ical and the digital world, where security breaches can lead
to significant harm. In recent years, rehosting has proven to
be an effective method for dynamic security testing of em-
bedded systems. However, existing approaches largely ignore
the automated rehosting of Direct Memory Access (DMA), a
key mechanism for receiving untrusted data. The only fully
automated DMA rehosting approach considers just one out
of six common DMA mechanisms, leaving significant gaps
in the security analysis of firmware.

In this work, we introduce GDMA, a comprehensive solu-
tion for fully automated DMA rehosting. GDMA successfully
emulates all six DMA configuration mechanisms by analyzing
emulation traces to identify the two critical DMA usage steps:
DMA configuration and DMA buffer usage. More specifi-
cally, it first collects type information on MMIO registers that
consistently behave like pointers. We organize this informa-
tion in type trees, which capture relationships between MMIO
registers and the memory regions they reference. GDMA then
overlays and merges these trees to iteratively distill a DMA
configuration. By applying this configuration in a generic
DMA peripheral, GDMA enables effective testing of DMA-
dependent firmware. We evaluate GDMA on a total of 114
firmware images. Compared to the state of the art, GDMA is
the first to successfully emulate all samples of the state-of-the-
art benchmark, reaching 3x the DMA mechanism coverage.
We also introduce a fully reproducible data set to systemati-
cally evaluate DMA rehosting of all six mechanisms. GDMA
successfully rehosts all of these, which is a factor of 6x com-
pared to existing methods. Finally, we evaluate GDMA on
various DMA-enabled firmware and discover 6 new bugs with
6 assigned CVEs following a coordinated disclosure.

1 Introduction

Firmware is the fundamental level of code that connects the
hardware components and the higher-level software applica-
tions in embedded systems. Ensuring its security is critical, as

vulnerabilities at this level can compromise the entire system,
leading to unauthorized access and similar security incidents.
With the growing connectivity and integration of embedded
systems, firmware security has become increasingly impor-
tant. Among the various techniques used to improve firmware
security [30, 46], fuzz testing (fuzzing for short) stands out
as particularly effective. By systematically providing semi-
random inputs to the firmware under test, fuzzing uncovers
software faults often missed by other testing methods.

To implement firmware fuzzing effectively, it is essential
to execute the firmware and provide diverse inputs in a con-
trolled environment [49]. Rehosting–the process of running
firmware outside its native hardware context in an emulator–
makes this possible efficiently and at scale [14]. Rehosting
eliminates the need for physical hardware during testing and
enables a dynamic analysis across numerous firmware sam-
ples. This capability has made rehosting an essential method
for dynamic security testing, enabling extensive testing that
is not feasible on physical devices [8, 9, 15, 31, 32, 47, 48].

Current rehosting approaches rely on techniques such as
hardware abstraction layer (HAL) replacements [10, 35] and
peripheral emulation [50] to emulate the hardware environ-
ment that the firmware expects. One major challenge remains
largely unaddressed: the automated handling of Direct Mem-
ory Access (DMA) operations. DMA descriptors instruct a
DMA peripheral to transfer data to or from system memory
without continuous intervention of the processor. This en-
ables an efficient data transfer, but makes emulation more
complex. Recent rehosting efforts, both source-based [20]
and specification-based [50], have largely avoided automated
DMA handling due to its complexity. Instead, they rely on
manual, case-by-case implementations that require domain
expertise and do not scale. An accurate modeling of DMA is
challenging, especially given that DMA operations are indi-
rect and often involve a non-obvious communication between
hardware and memory. Overcoming this limitation is essential
for scalable and automated rehosting solutions.

A notable attempt to address this challenge is DICE [27],
which introduced a simple heuristic to emulate the most ba-

sic forms of DMA automatically. DICE assumes fixed, pre-
dictable memory-mapped I/O (MMIO) register layouts to
reduce false positives during emulation. While a step forward,
this approach is limited in scope and applicability. We sys-
tematically analyze technical reference manuals of popular
microcontrollers and find that there are six popular variants of
DMA configurations; five of them are not covered by DICE.
More specifically, our analysis reveals that hardware develop-
ers often use diverse MMIO register layouts, making DICE’s
assumptions unreliable. Furthermore, the method ignores a
full class of DMA configuration mechanisms: RAM-based
DMA descriptors. As a result, we find that the robust identifi-
cation of DMA configurations is still an unsolved challenge.

In this paper, we address the problem of fully generic DMA
rehosting by proposing GDMA, a method to enable automated
modeling of DMA behavior. By iteratively refining a DMA
behavior model based on memory access traces, our method
enables the handling of diverse DMA mechanisms without
requiring source code or hardware specifications. More specif-
ically, we propose a four-step process to achieve fully generic
DMA rehosting by taking advantage of the inherent proper-
ties of DMA: the configuration of buffer locations and the
(pseudo-)uninitialized nature of receive buffers. First, we iso-
late pointer-like MMIO registers to avoid unsolicited pointer
writes by identifying only registers that consistently point to
RAM as potential DMA descriptor candidates. Next, we col-
lect type information from MMIO and RAM access traces in
the form of many type trees, which represent data structures
at RAM locations pointed to by MMIO registers. We overlay
and merge these trees iteratively to distill a common type per
MMIO register. This ensures consistency of type information
across firmware executions and avoids false positives due to
unexpected RAM contents. Based on the distilled type tree,
we synthesize a DMA configuration by matching the type
layout against the six common variants and by checking for
potential DMA buffer accesses in the leaf nodes of the dis-
tilled type tree. Finally, we extend the rehosting system by
a generic, configuration-driven DMA peripheral to handle
DMA by applying the automatically synthesized configura-
tions. These specify the MMIO register addresses and DMA
descriptor structures and enable the generic DMA peripheral
to inject fuzzing data. Our iterative approach ensures that
DMA behaviors are discovered and refined incrementally.

A practical challenge for the evaluation of our approach
is the lack of a comprehensive data set to measure the DMA
capabilities of different approaches. To address this gap, we
have developed a data set of fully reproducible, standardized
firmware images specifically designed to test the DMA capa-
bilities of rehosting techniques. This benchmarking not only
facilitates the evaluation of our approach but also provides a
valuable resource for future research in this area.

We evaluate GDMA on a total of 114 firmware images. In
an empirical evaluation, we show that GDMA is the first solu-
tion to successfully achieve full coverage of DMA rehosting

on an existing benchmark, which is 3x the coverage of DMA
mechanisms of the state of the art. On the new benchmark that
covers all six DMA mechanisms, our evaluation indicates that
GDMA even achieves a factor of 6x in successfully rehost-
ing DMA mechanisms. Furthermore, our evaluation shows
that GDMA allows a fuzzer to successfully cover complex
DMA firmware behavior, leading to higher code coverage
(an increase between 3.5% and 152.6% compared to the non-
DMA-enabled baseline) and the identification of 6 previously
unknown bugs that were fixed by the vendors.

In summary, our key contributions are as follows:
• We present the design and implementation of GDMA,

a generic DMA rehosting approach capable of identify-
ing and automatically modeling both MMIO-based and
RAM-based DMA descriptors.

• We address an important problem affecting the firmware
rehosting research community by providing a set of fully
reproducible, standardized firmware images designed to
test the DMA capabilities of rehosting techniques.

• We perform a comprehensive evaluation demonstrating
that GDMA is the first fully automated DMA modeling
technique to correctly model all of the current state-of-
the-art data set and to provide coverage for 6x the DMA
mechanisms compared to the state of the art.

• We demonstrate the security impact of GDMA by identi-
fying and disclosing 6 previously unknown bugs, leading
to the assignment of 6 CVEs in the core network stacks
of well-known real-time operating systems.

2 Technical Background

2.1 Security Assessment of Firmware
Embedded Systems Firmware. Embedded systems consist
of microcontroller units (MCUs) with purpose-built firmware.
Firmware interacts with the outside world through peripher-
als such as sensors, actuators, and network interfaces. Due
to the resource-constrained nature of such systems, embed-
ded firmware code executes bare metal and interacts with its
peripherals directly. These interactions take three common
forms: Memory-Mapped IO (MMIO), interrupts, and Direct
Memory Access (DMA). Via MMIO, the CPU configures and
queries peripherals by accessing a dedicated memory region.
Peripherals raise interrupts to notify firmware, e. g., about
the arrival of a network packet. In contrast to MMIO, DMA
allows peripherals to transfer data (such as network packets)
to main memory asynchronously without involving the CPU,
thereby avoiding the expensive process of reading MMIO
data from peripherals byte-by-byte.

Firmware Security Testing. As embedded systems are the
backbone of critical infrastructure systems, their resilience
against manipulation by adversaries is paramount. In partic-
ular, embedded firmware provided by third parties must be
assessed for security vulnerabilities. Fuzzing is an effective

dynamic testing technique to perform such analyses [8,23,35]
but is met with several challenges for embedded firmware [30].
Fuzzing relies on a high throughput of testing samples, but
fuzzing firmware on embedded hardware is typically slow.

Rehosting. A promising approach to overcome slow hard-
ware for embedded firmware fuzzing is to host it on virtual
hardware (called rehosting). Rehosting needs to handle the
diverse peripherals of the embedded system to allow the
firmware to execute normally and receive outside input via
MMIO and DMA. While DMA rehosting has largely been un-
addressed (see Section 3), automated solutions exist to model
MMIO peripherals [9, 15, 31, 32, 48]. These solutions allow
the fuzzing of MMIO-based firmware in a scalable way.

2.2 Direct Memory Access (DMA)

MCUs implement DMA support via controller peripherals,
which are present in most 32-bit MCUs [27]. These con-
trollers expose MMIO registers to set up asynchronous data
transfers between peripherals, flash, and RAM. To config-
ure transfers, DMA controllers allow for the population of
DMA descriptors. A DMA descriptor is the smallest unit of
DMA configuration. It contains information for a given trans-
fer, including the transfer source and destination (common
sources and destinations are RAM buffers or a peripheral data
register). In the following, we refer to transfer destination
buffers that reside in RAM interchangeably as receive buffers.
After configuring a DMA descriptor, the firmware activates
the transfer, prompting the DMA controller to start moving
data. Once the DMA controller has finished the transfer, it
either notifies the firmware via an interrupt or the firmware
explicitly polls the status by reading the DMA controller’s
status register(s). The firmware subsequently processes the
contents of the receive buffers or initiates further transfers.

Scatter-Gather DMA. A complex form of DMA configu-
ration is Scatter-Gather DMA. Instead of using a single DMA
descriptor that holds a source-destination pair, multiple de-
scriptors are used to either populate multiple destinations
from a single source (scatter) or to write multiple sources to
a single destination (gather). For scatter-gather operations,
DMA controllers use structures that contain multiple DMA
descriptors such as descriptor chains or descriptor pointer
tables, which we explain in Section 3.2.

3 DMA Rehosting: A Solved Problem?

DMA is a core mechanism through which firmware receives
data from the outside world. To effectively fuzz test firmware,
it is necessary to rehost DMA transfers (i. e., filling DMA
buffers with fuzzing input). As we will show in Section 6.5,
being able to test DMA-enabled parts of the firmware in-
put processing allows for achieving more code coverage and
identifying previously unknown vulnerabilities.

Table 1: Categorization of DMA handling in rehosting works.

Approach Type Tool Name

Automatic DICE [27]

Hardware
GDBFuzz [12]
Shift [28]
uAFL [22]

Manual HAL Hooks

HALucinator [10]
MetaEmu [7]
ParaRehosting [21]
SafireFuzz [35]

Manual Annotations

CO3 [23]
EmberIO [13]
MultiFuzz [9]
Perry [20]
Fuzzware [31]
SEmu [50]

In this section, we first review the state of the art of DMA
rehosting. While DMA is mentioned regularly in previous
works, we found that upon closer inspection, currently only
one fully automated approach exists. Next, we systematize
the different mechanisms by which DMA peripherals can be
configured to understand the extent to which DMA rehosting
is currently addressed. We identify six prevalent mechanisms
of configuring DMA, of which only the simplest one is ad-
dressed by the current state of the art. Finally, we analyze why
only the simplest form of DMA has been addressed and de-
duce the challenges involved in fully automatically rehosting
complex DMA configuration mechanisms.

3.1 State of the Art of DMA Rehosting

As shown in Table 1, most rehosting systems either off-load
DMA to physical hardware, leverage hardware abstraction
layers to replace DMA, or rely on manual annotations to
implement custom peripherals. Two works are considered
fully automated by related work: SEmu [50] and DICE [27].

SEmu parses MCU specification files to extract condition-
action rules that allow for high-fidelity MMIO emulation.
However, as the authors point out, and as is also evident in
the code base, manual, platform-specific patches are required
to support DMA [51]. Consequently, SEmu is not a fully
automated approach for DMA rehosting. We thus exclude
SEmu from the evaluation.

DICE, the only fully automated approach, identifies DMA
transfers via an MMIO write pattern. Specifically, DICE con-
siders two addresses written to two directly adjacent MMIO
registers as the source and destination addresses of a DMA
transfer. If this exact pattern matches, DICE assumes DMA.
Otherwise, DICE assumes no DMA. In their evaluation, the
authors state that their approach does not work on all tar-

Buf

MMIO-based DMA Configuration

M1: Adjacent Source and
Destination Registers

Buf

M2: Implicit Source Register

BufSrc

M3: Non-adjacent Source and
Destination Registers

RAM-based DMA Configuration

Buf

R1: Descriptor Table

DSC

Buf

R2: Descriptor Chain

DSC

Buf

DSC

R3: Descriptor Pointer Table

Buf

DSC

Buf

DSC

MMIO MMIO MMIO

MMIO MMIO MMIO

DSC

Buf

Dst Dst Dst

Src

.

.

.

.

.

DICE-supported Unsupported by SotA.

Buf

MMIO-based Descriptors

T1: Adjacent Source and
Destination Registers

Buf

T2: Implicit Source Register

BufSrc

T3: Non-adjacent Source and
Destination Registers

RAM-based Descriptors

Buf

T4: Descriptor Table

DSC

Buf

T5: Descriptor Chain

DSC

Buf

DSC

T6: Descriptor Pointer Table

Buf

DSC

Buf

DSC

MMIO MMIO MMIO

MMIO MMIO MMIO

DSC

Buf

Dst Dst Dst

Src

.

.
.

.

.

DICE-supported Unsupported.

DSCDSCDSC

Figure 1: Prevalent DMA configuration mechanisms. We
identify six mechanisms across two categories: MMIO-based
DMA configurations reside solely in MMIO registers. For
RAM-based DMA configurations, DMA descriptors (DSC)
reside in RAM and are referred to by an MMIO register.

gets [27]. They detail one unsupported mechanism in the
paper: Two platforms of the data set (nRF51 and nRF52) only
use a single MMIO pointer register. As a second adjacent
MMIO pointer is not present, DICE misses this mechanism.

Summary. Our review of the current state of the art shows
that existing approaches to DMA modeling are largely man-
ual. Additionally, the only fully automated approach, DICE,
addresses only one specific configuration pattern.

3.2 DMA Configuration Mechanisms
To better understand the scope of currently unaddressed chal-
lenges in DMA rehosting, we analyzed the reference manuals
of 10 popular MCU vendors, 6 of which were already an-
alyzed by DICE. The first insight that we draw from our
analysis is that there are six prevalent mechanisms of DMA
configurations, which we term M1-M3 and R1-R3. Figure 1
provides an overview of these mechanisms. We categorize
them in two sets with three members each, MMIO-based
configurations and RAM-based configurations.

MMIO-based DMA configuration. In MMIO-based
DMA configurations, DMA descriptors (denoted as DSC in
Figure 1) are embedded directly into the MMIO region of
the DMA controller. In this case, MMIO registers hold all
information about a transfer, including its source and destina-
tion addresses. We found three mechanisms of MMIO-based
configurations. The first mechanism (M1) is the mechanism
that DICE captures: The source and destination address are
placed into directly adjacent MMIO registers. For the second
mechanism (M2), only a single pointer is configured via an

MMIO write, while the peripheral address is implied. This is
the case that the DICE paper mentions as a limitation. The
third mechanism of MMIO-based configuration (M3) uses
a source and destination pointer in MMIO, but these point-
ers are not adjacent, thus also missed by DICE, albeit not
explicitly mentioned in the paper.

RAM-based DMA configuration. As opposed to MMIO-
based configurations, RAM-based DMA configurations store
descriptors in RAM, not in MMIO registers. They only write
the address of RAM-based metadata into an MMIO register
instead of the transfer’s metadata itself. This introduces a
layer of indirection between the (obvious) MMIO accesses
and the information required to perform a DMA transfer. We
categorize RAM-based configurations into three mechanisms.
The first RAM-based mechanism, R1, configures its DMA
descriptors (DSC) in a table layout. Each DMA descriptor
contains all the metadata required for a DMA transfer. The
second RAM mechanism, R2, uses a chain of descriptors.
Here, in addition to its usual transfer-related metadata, each
descriptor refers to the next descriptor in the chain. R3 also
uses a table, but each table entry contains a pointer to a de-
scriptor instead of the descriptor itself.

3.3 Challenges of DMA Modeling

As current fully automated DMA rehosting techniques ad-
dress only the simplest of the six identified DMA mechanisms,
the core challenge of automated DMA rehosting remains un-
addressed: the robust identification of DMA configurations.

To better understand previous design choices, it may be in-
structive to reflect on the challenges faced by rehosting DMA
when we compare them to the challenges of MMIO rehosting,
which has recently seen significant progress. Unlike MMIO,
accesses to DMA buffers cannot be detected by observing a
well-known region of memory. As DMA buffers are largely
free to reside anywhere in system RAM, their accesses blend
in with regular accesses to system memory. Great care has
to be taken not to confuse accesses to regular RAM with an
access to a DMA buffer.

If a DMA transfer is accidentally detected for regular RAM,
fuzzing input may be written to an unexpected location. As a
result, the state of the firmware, such as global variables, heap
buffers, or the stack, would be corrupted. We assume that
this risk of false positives leads existing work to place very
specific constraints on what is considered a DMA descriptor.

In an effort to model DMA holistically, we identify three
challenges for modeling DMA in a fully automated manner:
C-1 Spurious MMIO-written pointer values: A typical

MCU contains hundreds of MMIO registers with diverse
semantics. Consequently, a set of arbitrary-looking val-
ues is written to each MMIO register. Some of these
values will appear pointer-like, which introduces a high
risk of false positives, especially for one-shot configura-
tion detection techniques.

Current approach: Limit the rehosting scope and only
address configuration mechanism M1, which inherently
places tight restrictions on adjacent MMIO registers.

C-2 Variety of DMA configuration mechanisms: DMA can
be configured in many different ways. DMA has to be
rehosted without introducing potential false positives.
Current approach: Leave the variety unaddressed.

C-3 Spurious RAM contents: In addition to pointer-like
writes to MMIO registers, once we attempt to identify
DMA descriptors in system RAM, the RAM contents
(e. g., those that are referenced by these MMIO regis-
ters) may disguise as potential DMA descriptors (mech-
anisms R1-R3). Thus, a one-shot attempt at detecting
RAM-based DMA descriptors based on arbitrary RAM
contents introduces another source of false positives.
Current approach: Limit the scope to MMIO-based
DMA mechanisms and do not address RAM-based ones.

Conclusion. Our review of existing firmware rehosting, in-
cluding HAL-based approaches and MMIO modeling tech-
niques that mention DMA has shown that fully automated
DMA remains largely unaddressed. Based on our analysis
of technical reference manuals, we introduced a systemati-
zation of six prevalent mechanisms of DMA configurations.
We found that current rehosting work only considers one of
these variants and leaves a full class of DMA (RAM-based
configurations) unaddressed. Our findings demonstrate that
the lack of DMA support in prior work on firmware rehosting
severely limits scalability for firmware security testing. A
comprehensive novel approach that addresses the previously
neglected challenges is urgently needed to cover more than
just the simplest mechanisms of DMA configuration.

4 Generic DMA Modeling with GDMA

We now introduce GDMA, our novel method for fully auto-
mated DMA rehosting to enable fuzzing of DMA-enabled
firmware for all six mechanisms of DMA configurations that
we discussed in Section 3.2.

4.1 Binary-only Prerequisites

To be as generically applicable and as scalable as possible,
we design our approach to require minimal information and
no manual intervention.

As we use no HAL abstractions, source code, or hard-
ware specifications, we inherit only the minimal assumptions
of generic MMIO-based rehosting systems (an approximate
memory layout, ISA emulation, and binary firmware). To
avoid other sources of information that other rehosting works
rely upon, we follow a binary-only approach. This means:

1. No access to firmware source code.
2. No access to hardware reference manuals.

Figure 2: High-level design overview of GDMA.

3. No access to firmware symbols.
4. No knowledge about the firmware HAL.
Requiring access to any of this additional information

would inherently restrict the applicability and scalability of
our approach. Access to (parts of) the firmware source code
or hardware reference manuals is often not available, symbols
are not contained in binary firmware images, and relying on
hardware abstraction layers would introduce manual effort
and expert knowledge.

4.2 Design Overview

We design our DMA modeling on the simple idea of identi-
fying a connection between (a) a potential DMA descriptor
and (b) potential DMA buffers. To make this actionable, we
use the insight that DMA has two distinct inherent properties:
the necessary configuration of DMA buffer locations and the
(pseudo-)uninitialized nature of DMA receive buffers.

First, firmware needs to configure a DMA peripheral to
make it aware of DMA buffers (see Section 2.2). While the
specific mechanisms vary, these configurations are based on
RAM addresses that are written to MMIO registers (see Sec-
tion 3.2). To identify the DMA mechanisms used by the target
firmware, we collect type information on the data in RAM
that pointer-like MMIO registers refer to. We represent this
type information via what we term type trees. We describe
type trees in more detail and with an example in Section 4.4.
To detect DMA configurations, we match these type trees to
the DMA configuration mechanisms described in Section 3.2.
To ensure consistent type information and to avoid false posi-
tive detections, we iteratively overlay and merge these type
trees for each MMIO register.

Second, a distinctive feature of DMA receive buffers is how
they are accessed. As receive buffers contain external input,
the firmware will, after configuring a DMA transfer, wait
for the transfer to complete and use its DMA receive buffer
in an uninitialized manner. More specifically, the firmware

Figure 3: GDMA overview of the iterative modeling approach
by the example of a type R2 transfer.

will read from the DMA buffer before writing to it, as it
would otherwise overwrite the received contents. We use this
property to identify DMA buffers in leaf nodes of type trees.

Overall, we propose the following four-step process, which
we also visualize in Figure 2:

1. Isolation of pointer-like MMIO registers. In this step,
we address challenge C-1 of spurious pointer-like MMIO
register writes. We consider only MMIO registers that
consistently represent pointers to RAM as potential
DMA descriptor candidates (Section 4.3).

2. Collection of raw type information. Based on traces of
MMIO and RAM accesses, we gather type trees of the
respective data in RAM which each consistently pointer-
like MMIO register refers to (Section 4.4). Type trees
form the basis for flexibly checking the adherence to
DMA configuration types (challenge C-2).

3. Distillation of DMA models. To address challenge C-
3, we then infer a common type tree for each consis-
tently pointer-like MMIO register. To achieve this, we
iteratively overlay and merge type trees to distill com-
mon type information (Section 4.5). Based on this type
information, we synthesize concrete models of DMA
configuration for the firmware target (Section 4.6).

4. DMA rehosting based on DMA models. To perform
DMA transfers during fuzzing, we extend the rehost-
ing system with a generic DMA peripheral. The periph-
eral parses a synthesized DMA model configuration and
writes fuzzing input into the identified DMA receive
buffers according to the detected structure (Section 5.2).

4.3 GDMA Iterative Modeling Approach

We observe that a DMA transfer is an iterative process. As
shown in Figure 3, the transfer is conceptually split into a
configuration phase and an (iterative) access phase. First, the
firmware sets up pointers (1) to DMA descriptors (2). After
configuring the DMA transfer and waiting for it to complete,
the firmware will access the first DMA buffer (3). Only in
case the (application-specific) contents of the first buffer pass
validity checks can the second buffer be accessed (4).

Figure 4: Example type tree for the LPC1837 R2 scatter-
gather DMA configuration. It uses a descriptor chain with a
DMA buffer and control information, as well as a pointer to
the next element per descriptor.

Consequently, the DMA mechanisms appear only over time.
The fuzzer has to first discover the DMA configuration stage
before the use of DMA starts becoming visible. The firmware
will access the first buffer only after the fuzzer indicates a
DMA transfer completion (for example, via an injected inter-
rupt). Initially, when the DMA transfer is not yet emulated,
the buffer contents will remain static. As these contents will
likely not pass any validation (such as for the adherence to
an application-specific header structure), the firmware may
not access the second buffer. Only after the DMA transfer for
the first buffer is modeled will the fuzzer be able to pass the
content validation, allowing the second buffer to be accessed.
Thus, we design GDMA to follow this iterative flow during
modeling. Conceptually, the modeling approach uses two core
characteristics of modern rehosting environments:

1. Their ability to gradually explore firmware functionality.
We integrate our design by providing DMA functionality
as its use is discovered.

2. The ability of the underlying fuzzing engine to produce
diverse firmware behavior. We use this to distill consis-
tent behavior for DMA configuration synthesis.

GDMA uses the rehosting environment to uncover diverse,
MMIO-based behaviors of the firmware under test. More
specifically, we base our analysis on RAM and MMIO access
traces from the input queue of the already integrated fuzzing
engine. The inputs that the fuzzer retains within the queue
represent the set of interesting behaviors that the fuzzing
engine has been able to trigger.

For these inputs, we generate traces of the accesses to
MMIO ranges, as well as to firmware RAM. We isolate
MMIO registers that consistently have pointer-like values
written to them. We discard any registers with an instance of
a non-pointer write and consider the remaining ones potential
DMA configuration MMIO registers.

4.4 Descriptor Type Tree Collection

After isolating candidates for DMA configuration MMIO
registers, we now gather type information based on the RAM
location pointed to by each MMIO register.

To be able to later perform DMA model detection, we
base our type inference approach on what we refer to as type
trees. A type tree contains nodes, where each node contains
fields. Each field has one of three types. We differentiate
between the three types Zero, Pointer, and HighEntropy.
While a Pointer represents a value that is a valid address,
HighEntropy represents a non-zero value that does not repre-
sent a valid address. For each RAM Pointer field in a node,
we associate a child node. Consequently, each node without a
Pointer field is a leaf node of the type tree. The root element
of a type tree itself is a Pointer to a node.

Example (type tree): As a practical example of a type tree,
we consider the scatter-gather DMA mechanism implemented
on the LPC1837 platform [36]. The mechanism uses a chain
of Linked List Items (LLI). Each LLI contains four fields:
the transfer source address (CSRCADDR), the transfer des-
tination address (CDESTADDR), a pointer to the next LLI
(CLLI), and control information about the size of the transfer
(CCONTROL). The linked list in the data structure makes
this mechanism a type R2 descriptor (see Section 3.2). Each
LLI configures one DMA transfer. In a receive operation, data
will be copied from an MMIO register (source) to a DMA
buffer residing in RAM (destination). Thus, CSRCADDR
will be set to the address of a peripheral data MMIO register.
Figure 4 shows how this mechanism translates to a type tree.
As CSRCADDR holds a mapped address, GDMA assigns a
Pointer type to the field. CDESTADDR and CLI point to
the DMA receive buffer and the next LLI, respectively. As
such, two Pointer types are assigned. As these are RAM
addresses, additional nodes are created for each. Assuming
that the values in the DMA buffer are zeroed, its node con-
tains fields of type Zero (on the left in Figure 4). The type
node referred to by CLLI mirrors the structure of its parent
node, with the difference that a zero in the link of the last LLI
indicates the end of the chain (on the right in Figure 4).

4.5 Common Data Type Inference

With the type trees collected, the goal of the next step is to
distill common type information. We achieve this by over-
laying and merging the type trees across interesting inputs.
A merged type tree represents the common type information
that is consistent across all firmware behaviors for a given
MMIO register. This type information forms the basis for our
DMA model synthesis, which we describe in Section 4.6.

Figure 5 illustrates how we generate the merged type tree
in multiple stages. Initially, we merge the type trees that
we collect from each MMIO pointer write within a given
trace. We then perform the same merging process across

Figure 5: Overview of our descriptor type inference approach.

interesting inputs. Using the distillation process, we address
the following two challenges. First, we need to extend the type
tree via iteratively discovered DMA interactions. For example,
no type information was present before the fuzzer discovered
the DMA configuration stage within the firmware (see 1 in
Figure 3). Second, values in RAM may lead to instances of
Pointer-typed fields (see Challenge C-3), which we aim to
prune in a process of data type merging. Data type merging is
performed via the type transitions shown in Appendix A. The
intuition behind these transitions is to find the least specific,
common denominator of types observed.

Example (extension): For an instance of extending a type,
we re-visit the example of the LPC1837 DMA descriptor
chain. Consider the scenario where, during DMA configura-
tion, the firmware first sets only a single DMA buffer in the
chain. In this case, the CLLI field of the first descriptor (LLI
1) would be set to zero (instead of Pointer for the third field
of LLI 1 in Figure 4), so the field is initially assigned type
Zero. If the firmware at some point chooses to configure a
DMA transfer with two linked list items, the CLLI field of the
first item will contain the address of the second item. Thus,
the field is assigned type Pointer in the type tree of the later
MMIO access. When the two types Zero and Pointer are
merged, this will result in the common type Pointer. This is
illustrated as 1 in Figure 5.

Example (pruning): For an instance of pruning of the
type tree, we consider the control field CCONTROL of an
LPC1837 LLI. Here, the initial value of CCONTROL had
a usual arbitrary bit assignment with a resulting type of
HighEntropy (the fourth field of LLI 1 in Figure 4). We
now consider an instance of a spurious value where the bit
pattern of CCONTROL happens to represent a valid RAM ad-
dress. The resulting type tree would then contain the spurious
type Pointer for this field. When merged with the existing

type HighEntropy, the two types are merged into a common
HighEntropy. This eliminates the spurious type in the first
merging stage. This is visualized as 2 in Figure 5.

4.6 Synthesizing DMA Configurations
Based on the merged type information, we synthesize DMA
configurations by matching a given type tree layout to one of
the six DMA mechanisms that we described in Section 3.2.

DMA buffer identification. As indicated in Section 4.2,
we identify DMA buffers by their (pseudo-)uninitialized na-
ture. To this end, we consider a RAM location a DMA buffer
candidate in case it adheres to a set of requirements regarding
additional per-node metadata in the type tree: its initializa-
tion state and its access state. Regarding the initialization
state, the RAM location is considered a DMA candidate in
case it is either uninitialized or initialized with a pattern of
repeating values since the DMA transfer has been configured.
Regarding the access state, we check the buffer to be read
from before it is written to (if it is written to at all).

Configuration synthesis. For the MMIO-based mecha-
nisms M1-M3, we perform the MMIO register isolation and
buffer identification steps. For the RAM-based mechanisms
R1-R3, we match the structure of the type tree against the
respective DMA configuration mechanisms. For a potential
descriptor (see DSC in Figure 1), we search for a combination
of a possible source MMIO address, a possible destination
DMA buffer RAM address, and an optional link pointer. For
optional link pointers, we recursively check the structure of
the referenced nodes to match the same source address, desti-
nation address, and link layout.

Once a consistent DMA mechanism has been found, we
generate a model that specifies the data structure of the DMA
mechanism. We apply this configuration to rehost the DMA
transfer and feed fuzzing input via our configuration-based
DMA peripheral, which we outline in Section 5.2.

5 Implementation

Our prototype of GDMA consists of a fully automated end-to-
end implementation of DMA detection, peripheral modeling,
and DMA transfer handling. We integrated GDMA in Fuzz-
ware [31] as an extension by adding the --dma DMA auto-
modeling flag to the fuzzware pipeline command. The
GDMA implementation is divided into two major parts: First,
we implemented a DMA modeling engine in Rust, which syn-
thesizes models of DMA descriptors, as outlined in Section 4.
Second, to apply these DMA descriptors during rehosting,
we implemented a generic, configuration-based DMA periph-
eral in Fuzzware. To configure the peripheral, we created the
Generic DMA Descriptor Definition (GDDD). The format
of GDDD closely mimics the type tree structure that we in-
troduced in Section 4.4 and allows the DMA peripheral to
perform DMA transfers accordingly.

5.1 Type Inference
The type inference process of GDMA begins with a regular
Fuzzware run, where Fuzzware models MMIO interactions
and provides fuzzer input as usual. We extend the pipeline
component of Fuzzware by having it generate MMIO and
RAM access traces for interesting inputs. GDMA processes
these traces to incrementally perform the data type inference
and model synthesis as described in Section 4. Raw type
information is collected once new interesting inputs are avail-
able in the queue of the fuzzer. The implementation performs
the distillation of the type information into DMA models ev-
ery 10 minutes. Once a model is synthesized, the Fuzzware
pipeline is instructed to update its emulator configuration by
integrating the generated GDDD configuration. This triggers
the GDMA peripheral to start rehosting DMA transfers, as
described in the next section.

5.2 GDMA Peripheral
We extended Fuzzware with a generic DMA peripheral that
abstracts over DMA descriptor models by accepting GDDD
model configurations. Our peripheral is integrated into the
snapshotting mechanism of Fuzzware. Our peripheral lever-
ages the memory hooking ability of Fuzzware to monitor
MMIO register writes. When a write to a designated DMA
register is detected, GDMA parses the corresponding DMA
descriptor according to the provided GDDD format. For the
resulting DMA receive buffers, the peripheral hooks read ac-
cesses to the buffer and supplies fuzzing input upon access.
For the identification of DMA buffer sizes, we adopt the linear
buffer growth mechanism introduced by DICE [27].

6 Evaluation

We evaluate GDMA along the following research questions:
RQ1 Does GDMA support all 6 DMA mechanisms?
RQ2 What is the false positive rate of GDMA?
RQ3 How does GDMA perform against the state of the art?
RQ4 Can GDMA discover unknown vulnerabilities?

6.1 Experimental Setup
To answer our research questions, we first design a diverse
data set comprising all six DMA mechanisms and analyze
the DMA support provided by DICE and GDMA (RQ1). We
exclude SEmu [50] from our evaluation as its DMA support is
based on a manual implementation of DMA behavior [51] (see
also Section 3.1). Then, we verify that GDMA does not falsely
detect DMA transactions in firmware (RQ2). To this end, we
first evaluate whether GDMA falsely detects DMA transfers
in an established unit test suite from the rehosting space (Sec-
tion 6.3). Second, we validate that no spurious GDMA trans-
fers are detected in DMA-enabled firmware (Section 6.2 and

Table 2: DMA mechanisms covered by the existing DICE
data set and our new data set. The top half of the platforms
were already part of the DICE data set.

Platform DICE GDMA

DMA mechanism M1 M2 M3 R1 R2 R3 M1 M2 M3 R1 R2 R3

STMicro STM32F
Nuvoton NUC123

Atmel SAM3X G# #
NXP LPC1837 #
Nordic nRF52 G#

Freescale MK64F # #
Renesas RA4W1 H# #

TI CC13 #
Infineon PSoC6 #
SiLabs EFM32 #
 : Mechanism contained in data set, mechanism supported
G#: Mechanism contained in data set, mechanism not supported
H#: Mechanism not in data set, mechanism supported
#: Mechanism not in data set, mechanism not supported
Blank: Hardware does not use the mechanism

Section 6.4). To evaluate RQ3, we compare GDMA against
DICE, the only existing fully automated tool for DMA emu-
lation. Our experiments also evaluate against the respective
non-DMA baselines to account for the different underlying
rehosting engines (i.e., Fuzzware and P2IM, Section 6.4). We
then narrow the focus and run fuzzing campaigns where we
compare GDMA against its non-DMA baseline, Fuzzware,
and assess its bug-finding capabilities (RQ4).

Time Budget & Hardware Setup. Unless otherwise noted,
we repeated each experiment 10 times on one core per tar-
get for 24 hours, as recommended by Klees et al. [18]. We
used two Intel Xeon Gold 5320 CPUs (26 physical cores and
2.20GHz each), 256 GB of RAM, and SSD storage. All exper-
iments were executed on Ubuntu 22.04. For all our fuzzing
campaigns, we used the default fuzzing seed inputs provided
by the open-source release of the respective tool.

6.2 Support for DMA Mechanisms

As no current data set captures all six DMA mechanisms, we
introduce a new, comprehensive data set to evaluate RQ1.

Designing a Diverse DMA data set. So far, DICE [27]
presented the most comprehensive data set to evaluate the effi-
cacy of DMA rehosting approaches, consisting of 83 firmware
samples. However, despite its large size, the data set is not
designed to cover various DMA configuration mechanisms.
Instead, most DMA-enabled samples feature M1 descriptors
(with a strong bias towards STM32). RAM-based DMA con-
figuration mechanisms (R1-R3) are not included in the data
set. Due to these factors, we introduce a more varied and
streamlined DMA data set. We build upon platforms already

targeted by DICE and extend them by platforms of the pop-
ular vendors Texas Instruments (TI), Renesas, Infineon, and
Silicon Labs.

Table 2 shows the DMA configuration mechanisms used
by the platforms of the DICE data set and our extended data
set. We designed our data set based on the following goals:

1. Reproducibility: We provide the firmware source code
and docker containers to reproduce our binaries. Thus,
all patches to the targets are made transparent and new
changes can be made with ease.

2. Full DMA mechanism coverage: For each platform and
its supported DMA mechanism, we include a sample
that uses this particular mechanism.

3. Conciseness: We avoid redundancy and bias by not in-
cluding multiple samples for the same combination of
platform and DMA mechanism.

4. Coverage-based ground truth: To facilitate an automated
and broadly applicable evaluation, we design the passing
or failing of each test case to be determined by a simple
firmware code coverage check.

Diverse DMA Data Set Composition. The data set con-
sists of 15 samples in total, covering all 6 types of DMA and
10 different hardware platforms. For each vendor, we created
one firmware sample for each DMA mechanism that the ven-
dor’s platform supports. We chose one hardware platform per
vendor, as we observed that vendors reuse DMA mechanisms
across a device family. For example, both the nRF51 and
nRF52 series by Nordic Semiconductor reuse EasyDMA. The
10 covered vendors account for 85% of the worldwide MCU
market share [39]. We base the firmware images themselves
on sample applications of the corresponding vendor software
development kits (SDKs). These SDKs contain the board sup-
port packages, real-time operating systems, and embedded
network stacks that real-world products also build upon. The
benchmark functionality is inspired by the “password” sam-
ples from the authors of Fuzzware [31]. Each sample receives
data only via a DMA-enabled serial communication (e. g., via
UART, SPI, or a similar peripheral). This data is compared to
a magic value (“Password") byte-by-byte. A sample with con-
tiguous DMA matches the password linearly as only a single
DMA buffer is involved. A sample with non-contiguous DMA
involves two buffers and is not matched linearly. Instead, the
buffers are checked in turns. Initially, the first buffer needs
to start with the value ’P’. If this condition is fulfilled, the
first byte of the second buffer is checked for the value ’a’. We
implemented this turn-taking mechanism to reduce the impact
of the underlying fuzzer on the DMA buffer discovery.

This sample layout provides several benefits: First, each
rehosting platform, with or without DMA support, can exe-
cute these samples. This provides a diverse set of firmware
for future testing. Second, we can accurately measure the
fuzzing progress: If the fuzzer discovers a correct character, it
reaches a new basic block. Consequently, by curating a list of
these milestones, we can quickly evaluate how far the fuzzer

progressed through password discovery and confidently assert
whether DMA was successfully emulated. In total, as also
shown in Table 2, our data set doubles the number of vendors
and DMA mechanisms compared to DICE.

Evaluation. To answer RQ1, we evaluate GDMA on the
introduced firmware samples. We mark a contiguous sample
as passed if at least one password character is discovered. For
samples with two buffers, we mark the sample as passed if
at least one character per buffer is correctly discovered. Note
that the discovery of the entire password greatly depends on
the individual sample and the fuzzer’s performance. We also
evaluate these samples with Fuzzware [31] as a baseline.

The results are shown in Table 3. As expected, Fuzzware
does not cover any password characters in any firmware due
to its lack of support for automatic DMA detection. Indeed,
Fuzzware reaches the checking functions, but the configured
DMA buffers do not contain any data and thus do not match
the expected password character.

DICE inherits P2IM’s [15] limitation of requiring an AFL
forkserver integration in its targets. As we strive to provide a
broad data set for future use, we do not integrate custom AFL
forkservers into our firmware targets. Instead of running the
targets in DICE, we use a conservative theoretical evaluation
of DICE support. If the DMA configuration writes two adja-
cent pointers to MMIO, the DICE heuristic matches, and we
consider the emulation successful. Note that this is an upper
bound: As we will see in Section 6.4, P2IM limitations can
lead to undetected or misinterpreted DMA configurations.

DICE supports two target platforms fully and three more
target platforms partially. The fully supported platforms are
STM32 and Nuvoton NUC123, which both feature the DMA
mechanism M1. The Renesas RA4W1, Microchip SAM3X,
and NXP LPC1837 targets are partially supported. All three
implement the DMA configuration mechanism M1 for single-
source, single-target, contiguous transmissions and one of the
RAM-based types R1-R3 (see Table 2). Notably, regarding
RQ2, GDMA also did not detect any additional or misclas-
sified DMA configuration mechanisms. Across the 10 plat-
forms, GDMA successfully discovered password characters
in all (contiguous and two-buffer) setups. The tool correctly
identifies DMA behavior and emulates all six DMA mecha-
nisms. Consequently, GDMA supports all 6 DMA configura-
tion mechanisms (RQ1).

6.3 False Positive Analysis

As the second step of our evaluation, we evaluate the effec-
tiveness of GDMA to not only detect DMA mechanisms but
also to avoid detecting DMA mechanisms where DMA is
not actually intended by the firmware (RQ2). Note that a
false-positive analysis in terms of misclassifications for DMA-
enabled firmware is included in the previous evaluation of
our data set (see Section 6.2) as well as our analysis of the
results of the DICE data set (see Appendix B for details on

Table 3: Results of DMA mechanism sample set passing.

Platform Type No-DMA DICE GDMA

SAM3X
M1 ✗ ✓ ✓

M3 ✗ ✗ ✓

R2 ✗ ✗ ✓

STM32F103 M1 ✗ ✓ ✓

LPC1837
M1 ✗ ✓ ✓

R2 ✗ ✗ ✓

nRF52832 M2 ✗ ✗ ✓

NUC123 M1 ✗ ✓ ✓

MK64F
M3 ✗ ✗ ✓

R2 ✗ ✗ ✓

CC1311P3 R1 ✗ ✗ ✓

PSoC6 R1 ✗ ✗ ✓

EFM32LG R1 ✗ ✗ ✓

RA4W1
M1 ✗ ✓ ✓

R3 ✗ ✗ ✓

DMA Mechanisms 0/6 1/6 6/6
Platforms 0/10 2/10 10/10

Samples 0/15 5/15 15/15

misclassifications on the DICE data set). To this end, we eval-
uate GDMA on all 44 unit tests introduced by P2IM [15], the
MMIO-based rehosting system that underpins DICE. These
unit tests do not utilize DMA mechanisms. Instead, these tests
are designed to test different MMIO-based interactions with
hardware peripherals.

We evaluate all 44 firmware images in GDMA and find that
GDMA, just like DICE, identifies zero false-positive DMA
configurations in all 44 unit tests. This shows the efficacy of
the filtering mechanism of GDMA (RQ2).

6.4 Comparison with the State of the Art
We address RQ3 and expand on RQ2 by evaluating GDMA
against DICE, which introduces two different evaluation data
sets: a unit test set and a set of firmware samples used as
fuzzing targets. We evaluate GDMA on both data sets to test
the ability of GDMA to rehost DMA in a large set of firmware.

DICE Unit Tests. DICE introduces a unit test set com-
prised of firmware for the ARM and MIPS architectures, both
with and without DMA. To evaluate if GDMA supports all
targets that DICE supports, we transfer the ARM samples into
a data set. This results in 33 firmware images from 5 different
vendors. According to the authors, “each firmware accesses
multiple peripherals (ranging from 4 to 18) and registers (rang-
ing from 9 to 132). Each firmware configures up to 4 DMA
streams simultaneously." As a ground truth, we manually in-

Table 4: Summary of DICE and GDMA DMA rehosting
success rates on DICE unit tests.

Behavior DICE GDMA

✓ 15/33 45.5% 31/33 93.9%
(✓) 10/33 30.3% 2/33 6.1%
(✗) 1/33 3% 0/33 0%
✗ 7/33 21.2% 0/33 0%

✓ Correct
(✓) Fuzzer limitation (DMA usage not reached)
(✗) Wrong transfer direction (read instead of transmit)
✗ Undetected descriptor (DICE heuristic mismatch)

spect the firmware binaries and annotate DMA configuration
metadata. This ground truth consists of the buffer address and
the MMIO address that refers to the DMA buffer. We publish
this metadata alongside our data set.

We deem a DMA classification correct if the modeled con-
figuration matches the ground truth. If the underlying fuzzer
reaches the configuration and access of the given DMA buffer,
but no DMA configuration is detected, or the configuration
does not match the ground truth, we label this a misclassifi-
cation. We run each unit test in both DICE and GDMA and
show the results in Table 4. GDMA successfully identifies
the correct DMA configuration in each case where the under-
lying fuzzer is able to cover the configuration and use of the
DMA buffer (94% of the unit tests). DICE introduces two
sources of misclassifications. First, the DICE heuristics do
not apply to two out of the three DMA configuration mecha-
nisms contained in the data set (M2 and M3), leading to no
detected DMA. Second, as DICE differentiates between re-
ceive and transmit buffers by whether the buffer is read from,
one transmission buffer is misclassified as a receive buffer.
This results in 8 misclassifications, while GDMA does not
introduce any misclassifications. We provide a detailed analy-
sis in Appendix B. Overall, regarding RQ2, our experiment
shows that GDMA does not introduce any misclassifications
or false positives in the DICE data set. It also is the first
solution to enable DMA rehosting for the full DICE data set.

DICE Fuzzing Tests. Another set of tests introduced by
DICE aims to measure the coverage improvement of fuzzing
achieved by DMA-enabled rehosting. While we run these tests
with both GDMA and DICE, we note that a direct comparison
of code coverage is not fair due to the different underlying
fuzzers and rehosting systems. Thus, we mainly aim to ensure
that for samples where DICE has been shown to improve code
coverage over its non-DMA baseline, GDMA is able to do the
same. For this, we report the relative coverage improvement
in regard to the respective baseline and refer the interested
reader to Appendix C for additional coverage details.

During fuzzing, GDMA identified correct DMA configura-
tions in all cases. As shown in Table 5, GDMA consistently
reaches coverage benefits over its non-DMA baseline Fuzz-

Table 5: Coverage improvements introduced by DMA re-
hosting on the DICE fuzzing targets. The table shows the
improvements of DICE and GDMA over their respective no-
DMA baselines. Absolute numbers are shown in Table 8.

∆ DICE ∆ GDMA

GPS Receiver 30.1% 109.6%
Guitar Pedal 0.5% 0.1%

MIDI Synthesizer — ∗ 51.3%
Modbus 16.4% 16.9%

Soldering Station 0% 4.4%
Stepper Motor 2.2% 9.9%

∗ Not supported by baseline

ware, ranging from 0.1% to 109.6%. DICE’s performance ben-
efits over P2IM lie between 0% and 30.1%. Note that P2IM is
known to be unable to emulate the MIDI Synthesizer target.
Furthermore, we omit the Oscilloscope target because it is
dysfunctional [11].

In conclusion, for every sample in which DICE detects
DMA and shows improved coverage over its baseline, GDMA
is able to do the same. Furthermore, GDMA’s coverage delta
surpasses that of DICE in most cases (RQ3).

6.5 Fuzzing DMA-enabled Firmware

To assess RQ4, we run fuzzing campaigns against additional
firmware samples utilizing the less explored DMA mecha-
nisms (M2-R3). We deliberately exclude targets with DMA
mechanism M1, as GDMA’s performance on M1 targets is
proven in Section 6.4. The resulting 10 firmware images cover
a wide range of functionalities, such as network and bluetooth
stacks and a variety of parsers of common data types, such
as JSON and X.509 certificates. We perform the same experi-
ment with GDMA’s no-DMA baseline Fuzzware.

The results are shown in Figure 6. We plot the median, the
25th, and the 75th percentile of the 10 runs for both GDMA
and Fuzzware. GDMA outperforms Fuzzware on all 10 tar-
gets. The average coverage improvement per target ranges
between 3.5% and 152.6%. To determine whether the cov-
erage improvements enabled by GDMA over Fuzzware are
statistically significant, we use a bootstrap-based t-test as rec-
ommended by Schloegel et al. [33] and Vargha and Delaney’s
Â12 metric to measure effect size [42]. The results show that
for all samples, the coverage improvement is significant (at
p < 0.05) and, due to GDMA always enabling a higher cov-
erage than Fuzzware, a strong effect size of 1.00. We observe
that Fuzzware converges after at most 12 hours on all targets,
while GDMA continues to find new coverage. This indicates
that Fuzzware reaches the point in the firmware where DMA
is used, but further progress is impossible due to the lack of
DMA support. GDMA, however, explores the firmware fur-

0 6 12 18 24
0

2000

4000

bl

oc
ks

 c
ov

er
ed

M2-zephyr-6lowpan

0 6 12 18 24
0

500

1000
M3-mcuxpresso-cat

0 6 12 18 24
0

500

1000

R1-modus-toolbox-json

0 6 12 18 24
0

200

400

R2-sam3x-x509

0 6 12 18 24
0

200

400
R3-renesas-picohttp

0 6 12 18 24
time (h)

0

1000

2000

bl

oc
ks

 c
ov

er
ed

M2-contiki-6lowpan

0 6 12 18 24
time (h)

0

1000

2000

M3-mbed-bluetooth

0 6 12 18 24
time (h)

0

500

1000
R1-efm32-mqtt

0 6 12 18 24
time (h)

0

500

1000

R2-mcuxpressoide-ss7

0 6 12 18 24
time (h)

0

1000

2000

3000
R3-renesas-hci

Fuzzware + GDMA Fuzzware

Figure 6: Performance of GDMA on new, complex targets. The plots show the median, 25, and 75 percentile over 10 runs.

ther, as it is able to synthesize a correct DMA configuration
for all 10 targets. This allows GDMA to explore the parts
of the firmware that depend on DMA input. Differences in
improvements stem from the requirements of different parsers.
Indeed, a manual inspection of the R3-renesas-picohttp
sample shows that while GDMA provides DMA input for the
firmware to parse, the fuzzer is unable to progress far into
the HTTP parsing process, which requires several magic byte
strings. Similarly, targets with a large coverage improvement
(e. g., R2-mcuxpressoide-ss7) employ a parser with fewer
magic bytes, enabling the fuzzer to cover more parsing logic.

Found vulnerabilities. During our fuzzing campaigns,
GDMA detected multiple vulnerabilities not found by Fuzz-
ware. These vulnerabilities do not require a malicious or
malfunctioning peripheral and can be triggered via regular
network inputs. This demonstrates the benefits of DMA-
enabled rehosting. In total, we found 6 different bugs in the
underlying—and well-tested—embedded operating systems.
The vulnerabilities include out-of-bounds writes, integer over-
flows, and incorrect error handling. We reported all bugs to
the affected vendors. We provide an overview in Table 9.

We conclude that by rehosting all six DMA configuration
mechanisms, GDMA greatly increases fuzzing coverage on
DMA-enabled targets over its non-DMA-enabled baseline,
leading to the discovery of new vulnerabilities (RQ4).

6.6 Bug Case Study: CVE-2023-48229

To exemplify the types of vulnerabilities GDMA can discover,
we discuss CVE-2023-48229 as a case study. We discovered
this vulnerability in the IEEE 802.15.4 (LR-WPAN) stack of
Contiki-NG for nRF52 devices while working on GDMA.

Contiki-NG uses the proprietary nRF Radio HAL, which in
turn leverages Nordic’s easyDMA feature to asynchronously
write contents of incoming radio packets into RAM. Nordic’s
easyDMA is an example of an M2 configuration mechanism:

The position of the corresponding MMIO registers implies
its peripheral address, so only one pointer has to be explicitly
specified. Contiki-NG sets up the radio HAL to write incom-
ing packages into a static rx_buf structure, which contains the
IEEE 802.15.4 packet’s physical header (PHR), the MAC Pro-
tocol Data Unit (MPDU), and a status bit to indicate whether
a full packet was received. A firmware can set up Contiki-NG
to either poll for incoming packets by checking this status bit
or by receiving interrupts upon transfer completion.

static int read_frame(void *buf, unsigned short bufsize)
{

int payload_len;
/* [...] */

payload_len = rx_buf.phr - FCS_LEN; // FCS_LEN is 2

// Return if rx_buf.phr < 5 or rx_buf.phr > 127
if(phr_is_valid(rx_buf.phr) == false) {

LOG_DBG("Incorrect length: %d\n", payload_len);
rx_buf_clear();
enter_rx();
return 0;

}

memcpy(buf, rx_buf.mpdu , payload_len);
/* [...] */

}

Listing 1: Annotated Source Code for CVE-2023-48229.

The rx_buf structure is then polled inside the read_frame()
function, as shown in Listing 1. The function has only
one static call site directly after a full packet is stored in
RAM via DMA. In the default configuration of Contiki-NG,
read_frame() is now called with a 128-byte buffer as input.
The function calculates the payload length specified by the
phr field of the received packet and verifies that it stays within
the expected range of an IEEE 802.15.4 packet. Hence, the
contents of the packet in rx_buf are only copied to the in-
put frame buffer if the packet consists of less than 128 bytes.
At this point in time, static analysis may conclude that while
read_frame() is not optimally implemented, it may not directly

introduce a security vulnerability, and existing automated re-
hosting systems are unable to reach this code path due to
missing support for receiving input via the M2 mechanism.

However, when fuzzing this sample with GDMA, we de-
tected a buffer overflow during the call to memcpy. The rea-
son for this is an indirect call to read_frame() taken during
runtime from the higher nrf_ieee_driver layer, which is eas-
ily missed during static analysis. This call to read_frame()
aims to receive an acknowledgment packet over the air after
sending an 802.15.4 Carrier Sense Multiple Access (CSMA)
packet. This sending occurs in a completely different part of
the radio stack. Such an acknowledgment packet has a fixed
size of three bytes. Thus, read_frame() is called with a three-
byte input buffer. However, a malicious sender can respond
with a larger acknowledgment, leading to the vulnerability.

Only GDMA is able to automatically detect this vulnerabil-
ity based on a default build of an nRF sample and by running
Fuzzware with the newly introduced --dma flag. As the pe-
ripheral leverages Nordic’s easyDMA feature (with type M2),
DICE is unable to emulate the DMA functionality. While
other work, such as HALucinator [10], which replaces the
HAL, can handle DMA transfers in general, it would also
miss the bug, as the bug itself resides in the HAL. This high-
lights the benefits of a full rehosting approach. By utilizing
DMA emulation, a fuzzer can explore the entire breadth of
the firmware – not only manually selected parts.

7 Related Work

DMA vulnerabilities, protection mechanisms, and related re-
search are very diverse due to the ubiquitous nature of DMA.

DMA in general-purpose computing systems. Prior work
has demonstrated that data transferred via DMA is a viable
attack vector enabling malicious peripherals to compromise
their host system [1, 17, 26]. To find vulnerable implementa-
tions, SADA [4] identifies unsafe DMA accesses in Linux de-
vice drivers statically. Other approaches implement dynamic,
fuzzing-based techniques to identify security vulnerabilities
in drivers [29, 37, 38, 45] and devices emulated by hypervi-
sors [5, 6, 24, 25, 34] that arise from, among other factors,
improperly handled DMA inputs. These approaches rely on
standardized APIs of general-purpose operating systems, such
as Linux or the Advanced Configuration and Power Interface
(ACPI) standard. Embedded firmware lacks such standardized
abstractions, so this prior work is inapplicable to the problem
space targeted by GDMA.

To mitigate some of the risks associated with using DMA
for peripheral communication, Wang et al. [43] proposed to
implement pointer authentication schemes for DMA accesses.
Bahmani et al. [3] developed a method to integrate DMA into
the security model of trusted execution environments. So far,
these approaches have not seen commercial adoption.

DMA in rehosted firmware. Firmware rehosting to en-
able the fuzzing of embedded devices has attracted signif-

icant research interest in recent years [14, 44]. One of the
primary challenges identified in this domain is the emula-
tion of peripherals, which is crucial for accurate and effective
firmware analysis. Such peripherals typically communicate
using either MMIO, which has been covered extensively in
prior work [9, 13, 15, 16, 31, 32, 48], or using DMA.

Beyond DICE [27], VDEmu [19] reimplements DICE’s
DMA handling (M1) in Fuzzware and is therefore inher-
ently limited by the same constraints w.r.t. DMA detection
as DICE. Other state-of-the-art approaches, capable of em-
ulating DMA accesses, generally follow one of three dif-
ferent approaches: (1) Bypassing DMA emulation and in-
stead intercepting calls into the Hardware Abstraction Layer
(HAL) of the firmware, (2) emulating specific DMA con-
trollers (3) relying on physical hardware. HALucinator [10],
Para-Rehosting [21], Safirefuzz [35] implement emulation
of DMA peripherals by relying on HAL functions that offer
a standardized interface for interacting with various periph-
erals. Other approaches [20, 50] implement specific DMA
controllers based on externally provided information, such
as textual specifications or driver source code. Lastly, sev-
eral approaches [12, 23, 28] bypass emulation entirely and
use physical hardware to execute firmware. Therefore, the
security properties of the firmware are evaluated in a realis-
tic environment, ensuring that discovered vulnerabilities are
unlikely to be false positives.

Our work. In comparison, GDMA is agnostic of the
firmware under emulation, requiring no prior knowledge, hard-
ware, specifications, or source code of the target.

8 Discussion

Exhaustiveness of DMA Mechanisms. Our evaluation of ref-
erence manuals shows that six types capture the mechanisms
used by a wide range of silicon vendors. However, we stress
that hardware designers, in principle, may freely design these
DMA mechanisms. To detect arbitrary DMA mechanisms
outside of our evaluation, the DMA configuration synthesis
described in Section 4 would have to be extended. While
we cannot predict future hardware manufacturer design deci-
sions, we design GDMA’s components in a generic way. For
example, we allow the GDMA model configuration format
to express DMA descriptors of arbitrary compound types in-
stead of tying it to a particular type of DMA descriptor. This is
designed to ease the integration of future DMA mechanisms.

Non-ARM Targets. We focus on ARM MCUs, which
dominate the embedded sector, especially in the 32-bit mar-
ket [2]. DICE included two PIC32 MCUs in its evaluation. A
review of the respective reference manuals [40, 41] reveals
that these PIC32 MCUs employ only M1 descriptors. As
such, these samples would add little to our evaluation, as the
types represented in our dataset already include the single
DMA mechanism used in these PIC32 MCUs. However, as
our implementation builds upon Fuzzware (which does not

provide support for PIC32 MCUs), supporting other archi-
tectures would require extending the architecture support of
Fuzzware. We consider adding multi-architecture support to
Fuzzware outside the scope of this work.

Potential Future Work. A key feature of GDMA is the
filtering mechanism introduced by our MMIO isolation and
type inference (see Section 4). This step narrows down the
potential DMA configuration candidates. Based on this pre-
filtering, more heavy-weight program analysis techniques
such as symbolic execution could be employed to further
refine the modeling process or address challenges that stem
from previously unaddressed DMA mechanisms. This is why
we believe that GDMA may be leveraged as a basis for future
fully automated DMA modeling techniques.

In addition to the DMA modeling process itself, GDMA
could be used to test targets outside of embedded firmware.
For example, a possible direction to pursue is the testing of
operating system driver implementations.

9 Conclusion

In this work, we addressed the so far largely untouched chal-
lenge of fully automated and generic DMA rehosting. We
introduced a fully reproducible data set to enable the evalua-
tion of DMA rehosting of all of the six DMA configuration
mechanisms that we observed. GDMA successfully handled
all of these mechanisms, which is 6x the number of mecha-
nisms supported by the previous state of the art. In addition,
barring fuzzer limitations, GDMA is the first to cover all tar-
gets of the DICE DMA dataset. Finally, we have shown that
GDMA improved fuzzing effectiveness drastically. GDMA
increases the code coverage by between 3.5% and 152.6%
on DMA-enabled firmware targets and identified 6 new bugs,
each of which was assigned a CVE.

Acknowledgments

We thank our anonymous reviewers for their valuable feed-
back. This work was funded by the European Research Coun-
cil (ERC) under the consolidator grant RS3 (101045669) and
the Federal Ministry of Research, Technology and Space
(BMFTR) under the grants CPSec (16KIS1899), ASRIOT
(16KIS1901), and Startup Secure (16KIS2362). This work
was also supported by the German Federal Office for Infor-
mation Security (FKZ: Pentest-5GSec - 01MO23025B).

Ethics Considerations

Our paper presents a method for more effectively identify-
ing software faults in firmware images. We are confident
that we adhere to the high ethical standards and best prac-
tices of the research community. To minimize potential harm,
we promptly disclosed the identified vulnerabilities to the

respective projects shortly after discovering them, following
the community’s established coordinated disclosure practices.
Moreover, we provided assistance during the analysis and
patching of the vulnerabilities and supported the developers
in mitigating the bugs we identified. In total, 6 CVEs have
been assigned to our findings so far.

Open Science

In accordance with the principles of open science, we
open source our artifacts at https://www.github.com/
fuzzware-fuzzer/gdma-experiments and at https://
doi.org/10.5281/zenodo.15600641.

Our research artifact includes the following five different
components:

1. The firmware data set outlined in Table 2, which consists
of 15 new firmware samples, spanning 10 hardware plat-
forms and 6 different DMA mechanisms. The data set is
fully reproducible; i. e., each sample is provided with its
sources and a docker container to build the sample.

2. The second firmware data set (see Figure 6), which in-
cludes 10 different firmware based on vendor examples.
For this sample set, we also provide a docker-based build
reproduction set-up.

3. The ground truth metadata that we created for the DICE
dataset discussed in Section 6.4.

4. A reproducible, docker-based reproduction environment
for DICE and its non-DMA baseline P2IM.

5. The source code to GDMA, which enables Fuz-
zware [31] to effectively rehost DMA.

References

[1] Markuze Alex, Shay Vargaftik, Gil Kupfer, Boris Pis-
meny, Nadav Amit, Adam Morrison, and Dan Tsafrir.
Characterizing, exploiting, and detecting DMA code in-
jection vulnerabilities in the presence of an IOMMU. In
European Conference on Computer Systems (EuroSys),
2021.

[2] AspenCore. The Current State of Em-
bedded Development. https://www.
embedded.com/wp-content/uploads/2023/05/
Embedded-Market-Study-For-Webinar-Recording
-April-2023.pdf (Online; Accessed 2025-01-15),
2023.

[3] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky,
Patrick Jauernig, Matthias Klimmek, Ahmad-Reza
Sadeghi, and Emmanuel Stapf. CURE: A security ar-
chitecture with CUstomizable and resilient enclaves. In
USENIX Security Symposium, 2021.

https://www.github.com/fuzzware-fuzzer/gdma-experiments
https://www.github.com/fuzzware-fuzzer/gdma-experiments
https://doi.org/10.5281/zenodo.15600641
https://doi.org/10.5281/zenodo.15600641
https://www.embedded.com/wp-content/uploads/2023/05/Embedded-Market-Study-For-Webinar-Recording
https://www.embedded.com/wp-content/uploads/2023/05/Embedded-Market-Study-For-Webinar-Recording
https://www.embedded.com/wp-content/uploads/2023/05/Embedded-Market-Study-For-Webinar-Recording
-April-2023.pdf

[4] Jia-Ju Bai, Tuo Li, Kangjie Lu, and Shi-Min Hu. Static
detection of unsafe DMA accesses in device drivers. In
USENIX Security Symposium, 2021.

[5] Alexander Bulekov, Bandan Das, Stefan Hajnoczi, and
Manuel Egele. Morphuzz: Bending (input) space to fuzz
virtual devices. In USENIX Security Symposium, 2022.

[6] Alexander Bulekov, Qiang Liu, Manuel Egele, and Math-
ias Payer. HYPERPILL: Fuzzing for hypervisor-bugs
by leveraging the hardware virtualization interface. In
USENIX Security Symposium, 2024.

[7] Zitai Chen, Sam L Thomas, and Flavio D Garcia.
Metaemu: An architecture agnostic rehosting frame-
work for automotive firmware. In ACM Conference on
Computer and Communications Security (CCS), 2022.

[8] Michael Chesser, Surya Nepal, and Damith C. Ranas-
inghe. Icicle: A re-designed emulator for grey-box
firmware fuzzing. In International Symposium on Soft-
ware Testing and Analysis (ISSTA). Association for
Computing Machinery, 2023.

[9] Michael Chesser, Surya Nepal, and Damith C Ranas-
inghe. Multifuzz: A multi-stream fuzzer for testing
monolithic firmware. In USENIX Security Symposium,
2024.

[10] Abraham A Clements, Eric Gustafson, Tobias
Scharnowski, Paul Grosen, David Fritz, Christopher
Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias
Payer. HALucinator: Firmware re-hosting through
abstraction layer emulation. In USENIX Security
Symposium, 2020.

[11] CounterCycle. Oscilloscope test binary is
broken. https://github.com/RiS3-Lab/
DICE-DMA-Emulation/issues/9. Accessed:
2025-01-22.

[12] Max Eisele, Daniel Ebert, Christopher Huth, and An-
dreas Zeller. Fuzzing embedded systems using debug
interfaces. In International Symposium on Software
Testing and Analysis (ISSTA), 2023.

[13] Guy Farrelly, Michael Chesser, and Damith C Ranas-
inghe. Ember-IO: effective firmware fuzzing with
model-free memory mapped IO. In ACM Symposium on
Information, Computer and Communications Security
(ASIACCS), 2023.

[14] Andrew Fasano, Tiemoko Ballo, Marius Muench,
Tim Leek, Alexander Bulekov, Brendan Dolan-Gavitt,
Manuel Egele, Aurélien Francillon, Long Lu, Nick Gre-
gory, et al. Sok: Enabling security analyses of embedded
systems via rehosting. In ACM Symposium on Infor-
mation, Computer and Communications Security (ASI-
ACCS), 2021.

[15] Bo Feng, Alejandro Mera, and Long Lu. P2IM: Scal-
able and hardware-independent firmware testing via au-
tomatic peripheral interface modeling. In USENIX Se-
curity Symposium, 2020.

[16] Evan Johnson, Maxwell Bland, YiFei Zhu, Joshua Ma-
son, Stephen Checkoway, Stefan Savage, and Kirill
Levchenko. Jetset: Targeted firmware rehosting for
embedded systems. In USENIX Security Symposium,
2021.

[17] Taehun Kim, Hyeongjin Park, Seokmin Lee, Seunghee
Shin, Junbeom Hur, and Youngjoo Shin. Devious:
Device-driven side-channel attacks on the IOMMU. In
IEEE Symposium on Security and Privacy (S&P), 2023.

[18] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating Fuzz Testing. In ACM
Conference on Computer and Communications Security
(CCS), 2018.

[19] Youngwoo Lee, Juhwan Kim, Jihyeon Yu, and Joobeom
Yun. Embedded firmware rehosting system through
automatic peripheral modeling. IEEE Access, 2023.

[20] Chongqing Lei, Zhen Ling, Yue Zhang, Yan Yang, Jun-
zhou Luo, and Xinwen Fu. A Friend’s Eye is A Good
Mirror: Synthesizing MCU Peripheral Models from Pe-
ripheral Drivers. In USENIX Security Symposium, 2024.

[21] Wenqiang Li, Le Guan, Jingqiang Lin, Jiameng Shi, and
Fengjun Li. From library portability to para-rehosting:
Natively executing microcontroller software on com-
modity hardware. Symposium on Network and Dis-
tributed System Security (NDSS), 2021.

[22] Wenqiang Li, Jiameng Shi, Fengjun Li, Jingqiang Lin,
Wei Wang, and Le Guan. muafl: non-intrusive feedback-
driven fuzzing for microcontroller firmware. In Inter-
national Conference on Software Engineering (ICSE),
2022.

[23] Changming Liu, Alejandro Mera, Engin Kirda, Meng
Xu, and Long Lu. CO3: Concolic Co-execution for
Firmware. In USENIX Security Symposium, 2024.

[24] Yuwei Liu, Siqi Chen, Yuchong Xie, Yanhao Wang, Libo
Chen, Bin Wang, Yingming Zeng, Zhi Xue, and Purui
Su. Vd-guard: Dma guided fuzzing for hypervisor vir-
tual device. In ACM/IEEE International Conference on
Automated Software Engineering (ASE), 2023.

[25] Zheyu Ma, Qiang Liu, Zheming Li, Tingting Yin, Wende
Tan, Chao Zhang, and Mathias Payer. Truman: Con-
structing device behavior models from os drivers to fuzz
virtual devices. In Symposium on Network and Dis-
tributed System Security (NDSS), 2025. To appear.

https://github.com/RiS3-Lab/DICE-DMA-Emulation/issues/9
https://github.com/RiS3-Lab/DICE-DMA-Emulation/issues/9

[26] A Theodore Markettos, Colin Rothwell, Brett F Gutstein,
Allison Pearce, Peter G Neumann, Simon W Moore, and
Robert NM Watson. Thunderclap: Exploring vulnerabil-
ities in operating system iommu protection via dma from
untrustworthy peripherals. In Symposium on Network
and Distributed System Security (NDSS), 2019.

[27] Alejandro Mera, Bo Feng, Long Lu, and Engin Kirda.
Dice: Automatic emulation of dma input channels for
dynamic firmware analysis. In IEEE Symposium on
Security and Privacy (S&P), 2021.

[28] Alejandro Mera, Changming Liu, Ruimin Sun, Engin
Kirda, and Long Lu. SHiFT: Semi-hosted Fuzz Test-
ing for Embedded Applications. In USENIX Security
Symposium, 2024.

[29] Masanori Misono, Toshiki Hatanaka, and Takahiro Shi-
nagawa. Dmafv: testing device drivers against dma
faults. In ACM Symposium on Applied Computing
(SAC), 2022.

[30] Nicolas Nino, Ruibo Lu, Wei Zhou, Kyu Hyung Lee,
Ziming Zhao, and Le Guan. Unveiling IoT Security
in Reality: A Firmware-Centric Journey. In USENIX
Security Symposium, 2024.

[31] Tobias Scharnowski, Nils Bars, Moritz Schloegel, Eric
Gustafson, Marius Muench, Giovanni Vigna, Christo-
pher Kruegel, Thorsten Holz, and Ali Abbasi. Fuzzware:
Using precise MMIO modeling for effective firmware
fuzzing. In USENIX Security Symposium, 2022.

[32] Tobias Scharnowski, Simon Woerner, Felix Buchmann,
Nils Bars, Moritz Schloegel, and Thorsten Holz. Hoe-
dur: Embedded Firmware Fuzzing using Multi-Stream
Inputs. In USENIX Security Symposium, 2023.

[33] Moritz Schloegel, Nils Bars, Nico Schiller, Lukas
Bernhard, Tobias Scharnowski, Addison Crump, Arash
Ale-Ebrahim, Nicolai Bissantz, Marius Muench, and
Thorsten Holz. SoK: Prudent Evaluation Practices for
Fuzzing. In IEEE Symposium on Security and Privacy
(S&P), 2024.

[34] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi,
Simon Wörner, and Thorsten Holz. Hyper-cube: High-
dimensional hypervisor fuzzing. In Symposium on Net-
work and Distributed System Security (NDSS), 2020.

[35] Lukas Seidel, Dominik Christian Maier, and Marius
Muench. Forming faster firmware fuzzers. In USENIX
Security Symposium, 2023.

[36] NXP Semiconductors. LPC18xx ARM Cortex-
M3 microcontroller. https://community.nxp.
com/pwmxy87654/attachments/pwmxy87654/lpc/
55570/1/UM10430%20(1).pdf (Online; Accessed
2025-01-15), 2019.

[37] Zekun Shen, Ritik Roongta, and Brendan Dolan-Gavitt.
Drifuzz: Harvesting bugs in device drivers from golden
seeds. In USENIX Security Symposium, 2022.

[38] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad
Spensky, Yeoul Na, Stijn Volckaert, Giovanni Vigna,
Christopher Kruegel, Jean-Pierre Seifert, and Michael
Franz. Periscope: An effective probing and fuzzing
framework for the hardware-os boundary. In Symposium
on Network and Distributed System Security (NDSS),
2019.

[39] Statista. Leading microcontroller unit (MCU)
manufacturers worldwide in 2021, by market
share. https://www.statista.com/statistics/
1327509/top-mcu-suppliers-worldwide/ (Online;
Accessed 2025-05-09), 2021.

[40] Microchip Technology. PIC32MX5XX/6XX/7XX
Family Data Sheet. http://ww1.microchip.com/
downloads/en/DeviceDoc/60001156J.pdf (Online;
Accessed 2025-01-15), 2016.

[41] Microchip Technology. PIC32MZ Embed-
ded Connectivity with Floating Point Unit
(EF) Family. https://ww1.microchip.
com/downloads/aemDocuments/documents/
MCU32/ProductDocuments/DataSheets/
PIC32MZ-Embedded-Connectivity-with-Floating
-Point-Unit-Family-Data-Sheet-DS60001320H.
pdf (Online; Accessed 2025-01-15), 2021.

[42] András Vargha and Harold D Delaney. A Critique and
Improvement of the CL Common Language Effect Size
Statistics of McGraw and Wong. Journal of Educational
and Behavioral Statistics, 25(2):101–132, 2000.

[43] Xingkai Wang, Wenbo Shen, Yujie Bu, Jinmeng Zhou,
and Yajin Zhou. DMAAUTH: A lightweight pointer
integrity-based secure architecture to defeat DMA at-
tacks. In USENIX Security Symposium, 2024.

[44] Christopher Wright, William A Moeglein, Saurabh
Bagchi, Milind Kulkarni, and Abraham A Clements.
Challenges in firmware re-hosting, emulation, and anal-
ysis. ACM Computing Surveys (CSUR), 2021.

[45] Yilun Wu, Tong Zhang, Changhee Jung, and Dongyoon
Lee. Devfuzz: automatic device model-guided device
driver fuzzing. In IEEE Symposium on Security and
Privacy (S&P), 2023.

[46] Wei Xie, Yikun Jiang, Yong Tang, Ning Ding, and Yuan-
ming Gao. Vulnerability detection in iot firmware: A
survey. In International Conference on Parallel and
Distributed Systems (ICPADS), 2017.

https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/lpc/55570/1/UM10430%20(1).pdf
https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/lpc/55570/1/UM10430%20(1).pdf
https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/lpc/55570/1/UM10430%20(1).pdf
https://www.statista.com/statistics/1327509/top-mcu-suppliers-worldwide/
https://www.statista.com/statistics/1327509/top-mcu-suppliers-worldwide/
http://ww1.microchip.com/downloads/en/DeviceDoc/60001156J.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/60001156J.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/PIC32MZ-Embedded-Connectivity-with-Floating
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/PIC32MZ-Embedded-Connectivity-with-Floating
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/PIC32MZ-Embedded-Connectivity-with-Floating
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/PIC32MZ-Embedded-Connectivity-with-Floating
-Point-Unit-Family-Data-Sheet-DS60001320H.pdf
-Point-Unit-Family-Data-Sheet-DS60001320H.pdf

[47] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song,
Hongsong Zhu, and Limin Sun. {FIRM-AFL}:{High-
Throughput} greybox fuzzing of {IoT} firmware via
augmented process emulation. In USENIX Security
Symposium, 2019.

[48] Wei Zhou, Le Guan, Peng Liu, and Yuqing Zhang. Au-
tomatic Firmware Emulation through Invalidity-guided
Knowledge Inference. In USENIX Security Symposium,
2021.

[49] Wei Zhou, Shandian Shen, and Peng Liu. IoT Firmware
Emulation and Its Security Application in Fuzzing: A
Critical Revisit. Future Internet, 17(1), 2025.

[50] Wei Zhou, Lan Zhang, Le Guan, Peng Liu, and Yuqing
Zhang. What your firmware tells you is not how you
should emulate it: A specification-guided approach for
firmware emulation. In ACM Conference on Computer
and Communications Security (CCS), 2022.

[51] Wei Zhou, Lan Zhang, Le Guan, Peng Liu, and
Yuqing Zhang. SEmu-Fuzz implementation.
https://github.com/IoTS-P/SEmu-Fuzz/blob/
b6e381d8a9ffc2738450ec53b72effee85a9cb4d/
semu_fuzz/emulate/semu/rule.py#
L536C51-L536C62 (Online; Accessed 2025-01-15),
2023.

A Data Type Merging

Table 6: Overview of data type transitions: While merging
the types of two fields of a node within a type tree, the follow-
ing type merging rules are applied. Types are merged from
weaker to more dominant types in the order Zero, Pointer,
and HighEntropy.

Zero Pointer HighEntropy

Zero Zero
Pointer Pointer Pointer

HighEntropy HighEntropy HighEntropy HighEntropy

B Detailed DICE Unit Test Overview

As described in Section 6.4, there are different types of mis-
classifications. We describe the exact distribution of misclassi-
fications in Table 7. As mentioned in Section 6.4, we attribute
the misclassifications to two different sources: DICE heuris-
tic mismatch and wrong transfer direction classification. We
note that only DICE suffers from these misclassifications,
as GDMA correctly identifies the DMA configuration if the
fuzzer covers both DMA configuration as well as DMA usage.

A missing DMA detection occurs if the DICE heuristics
do not apply. The DICE data set includes six samples that use
DMA mechanism M2 (all 6 nRF samples) and one sample
that uses DMA mechanism M3 (the SAM3X ADC_PDC.ino).
These DMA mechanisms are not detected. DICE mentions
the nRF samples as a limitation but does not mention that the
second type of SAM3X DMA configuration is not supported.
However, the reference manual reveals that the source and des-
tination pointer in the second type of DMA are non-adjacent.
Consequently, this is an M3 DMA configuration mechanism
and is unsupported by the DICE heuristic.

A transfer direction misclassification occurs due to another
DICE heuristic: If the firmware reads from a buffer that is
referred to by an MMIO register, DICE classifies the DMA
transfer as a receive transfer. A transfer direction misclassifi-
cation occurs if a transmit buffer is read from. DICE incurs
one such misclassification.

Finally, both DICE and GDMA suffer from limitations of
the underlying fuzzing engines, P2IM and Fuzzware, respec-
tively. If the fuzzing engine does not cover DMA usage, no
transfer can be detected. We stress that this is a limitation
of neither approach; instead, it is a limitation of P2IM and
Fuzzware. P2IM fails to cover the use of DMA in 10 cases,
Fuzzware in 2 cases.

We conclude that GDMA is the first tool to successfully
rehost DMA for all samples, barring fuzzer limitations.

https://github.com/IoTS-P/SEmu-Fuzz/blob/b6e381d8a9ffc2738450ec53b72effee85a9cb4d/semu_fuzz/emulate/semu/rule.py#L536C51-L536C62
https://github.com/IoTS-P/SEmu-Fuzz/blob/b6e381d8a9ffc2738450ec53b72effee85a9cb4d/semu_fuzz/emulate/semu/rule.py#L536C51-L536C62
https://github.com/IoTS-P/SEmu-Fuzz/blob/b6e381d8a9ffc2738450ec53b72effee85a9cb4d/semu_fuzz/emulate/semu/rule.py#L536C51-L536C62
https://github.com/IoTS-P/SEmu-Fuzz/blob/b6e381d8a9ffc2738450ec53b72effee85a9cb4d/semu_fuzz/emulate/semu/rule.py#L536C51-L536C62

Table 7: Overview of GDMA and DICE performance on
DICE unit tests.

Platform Sample name DICE GDMA

F103 ADC_SingleConversion_TriggerSW_DMA ✓ ✓
F103 ADC_SingleConversion_TriggerTimer_DMA ✓ ✓
F103 ChibiOS_ADC_slider ✓ ✓
F103 ChibiOS_SPI ✓ ✓
F103 ChibiOS_UART ✓ ✓
F103 ChibiOS_acelerometer (✓) ✓
F103 I2C_OneBoard_AdvCommunication_DMAAndIT ✓ ✓
F103 I2C_OneBoard_Communication_DMAAndIT ✓ ✓
F103 I2C_TwoBoards_ComDMA ✓ ✓
F103 I2C_TwoBoards_MasterTx_SlaveRx_DMA (✓) ✓
F103 SPI_FullDuplex_ComDMA ✓ ✓
F103 SPI_OneBoard_HalfDuplex_DMA (✗) ✓
F103 SPI_OneBoard_HalfDuplex_DMA_Init ✓ ✓
F103 SPI_TwoBoards_FullDuplex_DMA ✓ ✓
F103 UART_HyperTerminal_DMA (✓) ✓
F103 UART_TwoBoards_ComDMA (✓) ✓
F103 USART_Communication_TxRx_DMA ✓ ✓
F103 USART_SyncCommunication_FullDuplex_DMA (✓) ✓
F429 ChibiOS_ADC_slider (✓) ✓

L1521 ChibiOS_SPI ✓ ✓
L1521 ChibiOS_UART ✓ ✓

LPC1837 PDMA_memory ✓ ✓
nRF51822 SPI_slave ✗ ✓
nRF51822 console_bleprph ✗ (✓)
nRF52832 SPI_master ✗ ✓
nRF52832 SPI_slave ✗ ✓
nRF52832 console_bleprph ✗ (✓)
nRF52832 uart ✗ ✓

NUC123 PDMA_memory (✓) ✓
NUC123 PDMA_usart (✓) ✓
SAM3X ADC_PDC.ino ✗ ✓
SAM3X spi_spi_dmac_slave_example_flash (✓) ✓
SAM3X usart_dmac_example (✓) ✓

✓: correct 15/33 31/33
(✓): fuzzer limitation (DMA usage not reached) 10/33 2/33
(✗): wrong transfer direction (read instead of transmit) 1/33 0/33
✗: undetected descriptor (DICE heuristic mismatch) 7/33 0/33

C Detailed DICE Fuzzing Tests Analysis

We provide a detailed comparison of DICE and GDMA per-
formance. We note that we do not compare coverage directly,
as the underlying fuzzing engines, P2IM and Fuzzware, have
a big impact on coverage.

Figure 7 shows the coverage graphs of DICE and GDMA
with their respective baselines, P2IM and Fuzzware. As ex-
pected, Fuzzware outperforms P2IM. This validates our ap-
proach to compare improvements over the baseline instead of
absolute coverage numbers.

Our observations are in line with the results reported by
DICE [27]. The Soldering-Station and Guitar-Pedal
targets only marginally benefit from DMA. Upon manual
inspection, we found that there are only marginal increases
because the firmware performs computations on the DMA
input, but this DMA input does not impact the control flow
much. Consequently, the firmware can perform its computa-
tion on null bytes if no DMA input is provided. This is in
contrast to targets that pass DMA input to parsers, such as

0 6 12 18 24
0

1000

2000

bl

oc
ks

 c
ov

er
ed

Soldering-Station

0 6 12 18 24
0

200

MIDI-Synthesizer

0 6 12 18 24
0

250

500

bl

oc
ks

 c
ov

er
ed

Modbus

0 6 12 18 24
0

1000

2000

Guitar-Pedal

0 6 12 18 24time (h)

0

500

1000

bl

oc
ks

 c
ov

er
ed

Stepper-Motor

0 6 12 18 24time (h)

0

500

GPS-Receiver

Fuzzware + GDMA Fuzzware DICE P2IM

Figure 7: Coverage of DICE fuzzing tests. The plots show the
median and the 25 and 75 percentile over 10 runs.

GPS-Receiver or Modbus. Here, the parser will always fail
to parse early if no DMA input is provided. Supplying DMA
thus allows for large coverage gains, as the fuzzer can now
cover the parsing logic.

Overall, GDMA performs much better than DICE, but Fuzz-
ware already significantly outperforms P2IM. This makes
numerical comparisons of the two approaches hard. Instead,
we analyze the coverage improvement over the respective
baseline. The detailed results can be found in Table 8. First,
we observe that our experiments show similar coverage im-
provements of DICE over P2IM as reported in DICE [27].
The only exception is the Stepper-Motor target. We assume
this stems from the difference in experiment setup. Our ex-
periments all run 24 hours, while DICE employs experiments
over 48 hours. Indeed, manual inspection of the target reveals
that DICE supplies DMA input to the parser of the motor
commands, but does not progress far into the parsing logic.
We assume that in 48 hours, P2IM cannot achieve additional
coverage while DICE continues to explore the parser, leading
to the difference in reported numbers in DICE.

In addition, we find that that Fuzzware (without DMA
support) outperforms P2IM on all targets and outperforms
DICE (with DMA support) on 50% of the firmware, proving
the impact of the underlying fuzzing engine. We note that
GDMA performance is always at least similar to DICE. In
the Guitar-Pedal and Modbus targets, performance gains
are similar between DICE and GDMA. In contrast, in the
GPS-Receiver, Soldering-Station and Stepper-Motor
targets, GDMA shows up to 79.1% more coverage improve-
ment than DICE.

We conclude that GDMA detects DMA in every sample
where DICE detects DMA. GDMA outperforms the state of
the art in coverage improvements in most targets (RQ3).

Table 8: DICE and GDMA average improvements (in basic blocks) over P2IM and Fuzzware, respectively.

#Total #P2IM #DICE ∆ DICE #Fuzzware #GDMA ∆ GDMA

GPS Receiver 3004 346 450 30.1% 391.0 819.5 109.6%
Guitar Pedal 8211 1391 1398.5 0.5% 2277.0 2289.6 0.1%

MIDI Synthesizer 703 0 316 – 236.0 357.0 51.3%
Modbus 811 428 498 16.4% 479.0 560.0 16.9%

Soldering Station 3308 1011 1011 0% 1966.9 2052.6 4.4%
Stepper Motor 4007 896 915.6 2.2% 1172.0 1288.3 9.9%

Table 9: List of CVEs assigned to bugs that were found by GDMA. The CVE identifiers are blinded for submission.

Software CVE Identifier Description

Contiki-NG CVE-2023-48229 Out of bounds write while reading an IEEE 802.15.4 frame.
Mbed-OS CVE-2024-48981 Out of bounds write due to missing size validation of HCI frames.
Mbed-OS CVE-2024-48982 Integer wrap around leading to out of bounds write while reading HCI frames.
Mbed-OS CVE-2024-48983 Integer overflow leading to out of bounds write while allocating memory.
Mbed-OS CVE-2024-48985 Missing error handling after failed allocation leading to out of bounds write.
Mbed-OS CVE-2024-48986 Out of bounds write on copy with illegal size.

	Introduction
	Technical Background
	Security Assessment of Firmware
	Direct Memory Access (DMA)

	DMA Rehosting: A Solved Problem?
	State of the Art of DMA Rehosting
	DMA Configuration Mechanisms
	Challenges of DMA Modeling

	Generic DMA Modeling with GDMA
	Binary-only Prerequisites
	Design Overview
	GDMA Iterative Modeling Approach
	Descriptor Type Tree Collection
	Common Data Type Inference
	Synthesizing DMA Configurations

	Implementation
	Type Inference
	GDMA Peripheral

	Evaluation
	Experimental Setup
	Support for DMA Mechanisms
	False Positive Analysis
	Comparison with the State of the Art
	Fuzzing DMA-enabled Firmware
	Bug Case Study: CVE-2023-48229

	Related Work
	Discussion
	Conclusion
	Data Type Merging
	Detailed DICE Unit Test Overview
	Detailed DICE Fuzzing Tests Analysis

