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Abstract
Cellular networks are a cornerstone of modern communica-
tion and indispensable to our daily lives. Their specifications
span thousands of pages, written primarily in natural language.
The ensuing complexity and lack of explicitness lead to un-
derspecification, where only subsets of possible interactions
are properly specified, while other behaviour is left undefined
and open to interpretation by developers. In practice, this
causes weird, unintended interactions in smartphone modems
implementing the specification that, in the worst case, lead to
security vulnerabilities.

In this work, we present the first generic approach for
systematically discovering undefined behaviour in cellular
specifications. Requiring solely a model of the behaviour de-
fined in the specification, our technique extends this model
to automatically reason about the presence of undefined be-
haviour. For each undefined behaviour, it automatically infers
concrete examples as proof of existence. This not only al-
lows improving the specification but also enables us to test
smartphone modems. This way, we can verify whether an in-
stance of undefined behaviour leads to a security vulnerability
within modem firmware. With our approach, we identify 58
cases of undefined behaviour in LTE’s Public Warning Sys-
tem, SMS, and Radio Resource Control specifications. Five
of these cases resulted in previously unknown vulnerabilities
that allow adversaries to read modem memory contents and
perform remote Denial of Service attacks (in one case just via
a single SMS) against commonly used smartphone modems.
So far, two CVEs of high and one CVE of critical severity
have been assigned.

1 Introduction

Cellular networks play an essential role in global communi-
cations. The foundations enabling this globally interoperable
communication network are the specifications issued by the
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3rd Generation Partnership Project (3GPP), an international
specification consortium. The specifications define the com-
munication protocol stack, from radio frequencies, mobility
management, authentication and encryption to a variety of
applications, such as text messages, emergency alerts, or web
browsing. Due to the abundance of applications and mobility
requirements, the individual layers of a cellular network are
highly complex and cannot be compared to protocols with a
single purpose, such as TCP/IP. As a result, the specifications
reflect this complexity.

Moreover, as the specifications are written primarily in nat-
ural language, the documentation does not specify every pos-
sible scenario a device could be presented with. For instance,
although the specifications define several message fragmen-
tation and reassembly procedures, the expected behaviour in
case of changing message metadata is left for interpretation
by developers implementing the specifications. Subsequently,
this gives rise to undefined behaviour, whereby the responsi-
bility of deciding how to handle such situations is delegated to
the manufacturers of user and network equipment. In reality,
when faced with nonconforming messages, phone modems
may simply display error messages, crash, disconnect, allow
an attacker to dump memory, send sensitive information with-
out encryption, or behave in any other way. Without a speci-
fied behaviour, there is no definitive decision on how to react,
leading to diverse and vulnerable implementations rather than
standardised and sane procedures.

The importance of cellular protocol specifications and the
impact of potential perils have been extensively researched
in the past [12, 21, 24–26, 37]. Most of the existing work, and
the specification’s own test suite, focus on testing positive
behaviour, i. e., verifying whether modem firmware adheres
to the specified behaviour or constraints [12,21, 24–26]. Only
recently, Park et al. [37] proposed to employ negative testing
to find vulnerabilities in phone modem implementations. To
do so, they identify Protocol Data Units (PDUs) not expected
by User Equipments (UEs) during regular operation, either
because it is explicitly forbidden in the specification or implic-
itly ignored, i. e., the specification does not state what should



or should not happen. Despite their approach not being able
to handle message sequences, fragmentation, or timers, they
successfully find numerous bugs in implementations, many
of them caused by a lack of specified behaviour. This further
motivates the need for finding undefined behaviour, not only
to test phone modems but also to fix the root cause in the
specification.

In this paper, we present the first approach towards system-
atically identifying undefined behaviour in cellular network
protocol specifications. Our method allows specification or-
ganisations to discover and eliminate undefined behaviour in
the specifications during their creation or modification, avoid-
ing any room for misinterpretation on the developer side. To
do so, we require a human expert to solely model the defined
behaviour of the specification in Temporal Logic of Actions
(TLA+) [29]. Our approach then extends this model via simple
syntactic rules to detect undefined behaviour, making it easy
to use and avoiding the requirement of an intricate understand-
ing of undefined behaviour in the specification. At the same
time, our approach can synthesize concrete PDU sequences
that trigger undefined behaviour. This way, we can test how
phone modems implementing the specification react to such
sequences. We evaluate our approach by applying it to the Pub-
lic Warning System (PWS), Short Message Service (SMS),
and Radio Resource Control (RRC) functionalities in the LTE
specification. The broad range of features and complexity
covered by them showcases that our approach is applicable in
practice and can model challenging parts, such as timers or
message sequences leading to undefined behaviour. Overall,
we identify 58 instances of undefined behaviour in the mod-
elled parts of the specification. When testing five commercial
smartphones from vendors Samsung, Oppo, Huawei, and One-
Plus, we identified four representative message sequences that
lead to modem crashes and Denial of Service (DoS) attacks
and one sequence leading to an out-of-bounds memory read.
After responsibly disclosing all vulnerabilities, three CVEs
have been assigned.

In summary, our contributions are as follows:

• We present the first generic approach to systematically
identify undefined behaviour in cellular network specifi-
cations.

• Our technique infers the undefined behaviour from a
model of defined behaviour, reducing the burden for
a human expert and enabling easy integration into the
specification process.

• We automatically synthesize a representative “counter
example” that proves the existence of undefined be-
haviour and allows us to test phone modems, leading
to five vulnerabilities and three CVEs.

To foster future research, we publish our models and
srsRAN forks at https://zenodo.org/record/8013704.
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Figure 1: Overview of the cellular network ecosystem.

2 Background

A cellular network operated by a Mobile Network Opera-
tor (MNO) consists of two primary components: the base
station, also called eNodeB (eNB), and the underlying back-
bone network, referred to as the Evolved Packet Core (EPC).
The customers of the MNO then use UEs, devices containing
a cellular modem such as a phone, to wirelessly communicate
with the individual eNBs. This connection enables a UE to
call or send messages to other UEs, but also allows the MNO
to authenticate subscribers, enforce data transfer quotas, or
broadcast emergency messages.

To implement this heterogeneous set of functionalities, UEs
and eNBs share a common syntax and semantics in their
communication. As illustrated in Figure 1, this common un-
derstanding is codified in the cellular specification. It is de-
signed and written by the 3GPP, an umbrella organization
that consists of regulatory institutions, MNOs, UE and Net-
work Equipment manufacturers as well as multiple non-profit
interest groups. They express the semantics of the cellular
specifications in natural language. For newer generations (see
below), the syntax of individual PDUs is described using
Abstract Syntax Notation One (ASN.1), a formal language
for data type declarations. Older generations usually use an
encoding defined in a custom, per-feature manner.

2.1 Standardisation Process

The standardisation process of a specification is divided in
several ways. First, there are multiple protocol generations,
such as 3G, LTE, and 5G. Within each generation, there are
multiple backwards-compatible releases. The purpose of a
new protocol generation is then to introduce improvements
to performance, scalability, or functionality aspects that are
not backwards compatible. For each protocol generation there
exist many technical specifications (TS) documents, each spec-
ifying a concrete part of the protocol.

https://zenodo.org/record/8013704
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Figure 2: 3GPP procedure for developing new technical speci-
fications [8]. Possible points in time where to check for errors
and undefined behaviour are numbered and highlighted in red.

The creation of a new TS is a three-phased process, as il-
lustrated in Figure 2 and specified in [8]. This process lasts
for months or even years, involves all 3GPP members, and,
interestingly, follows no unified way of describing the con-
tents, adding to the specifications’ complexity. As an example,
some documents are written from the perspective of the eNB
implementation [6, Rel. 15.10, pp. 918], while others are writ-
ten from the perspective of the UE implementation. First, an
initial version of the specification is drafted and frequently
updated. Secondly, once the TS draft is mature, the specifi-
cation enters change control and refinement changes are less
frequent. Lastly, the specification is frozen and released. Only
occasional changes are made in the form of new releases, and
device vendors create implementations according to these
released specifications.

There are critical points in time during this process where
the specification should be checked for errors, as depicted
in Figure 2. These concern ➊ the transition from a draft
into change control, as correcting errors under change con-
trol is a significant additional effort and a specification under
change control is assumed to be dependable, and ➋ when
implementing a change request under change control or to
the released specification. Lastly, ➌, any change request for a
release should be checked as well. Currently, error checking
is mostly manual work that focuses on the correct implemen-
tation of security algorithms and internal coherence [5]. How-
ever, the presence of undefined behaviour is not thoroughly
investigated.

2.2 Undefined Behaviour

Intuitively, undefined behaviour can be regarded as the ab-
sence of a specification or definition on how a component is
expected to handle the reception of a certain PDU in a specific
state. The specification contains the syntax that is used for
the communication between UE and eNB, and the defined
behaviour used to decode PDUs based on this syntax is rather
simple: If a message adheres to the syntax, then it is to be

Disconnectedstart Connected

action: connect

action: disconnect

Figure 3: Simple automaton defining an artificial UE connec-
tion procedure.

processed. Otherwise, it is ignored. The behaviour w. r. t. the
syntax is therefore always defined.

The more complex process is determining the (un-)defined
behaviour of the semantic part of the specification. This re-
quires taking into account two factors: the current state of the
phone (UE) and all PDUs that adhere to the defined syntax.
The specification defines a behaviour that a UE should show
when it receives a certain PDU in a certain state. Undefined
behaviour is caused by the remaining pairs of states and PDUs
for which no expected behaviour is given in the specification.

Definition 1: Undefined behaviour
An undefined behaviour is a combination of UE state and
a set of syntactically valid downlink PDUs, for which the
cellular network specification does not define an expected
reaction by the UE.

To illustrate this, consider the simple automaton in Figure 3,
which will serve as our running example. Assume that the
syntax allows one PDU field called action that can contain
either connect or disconnect. Further, assume that sending
the respective message allows moving between the Discon-
nected and Connected state as shown. This simple example
contains undefined behaviour, as it is not clear what should
happen if the device receives action: connect while con-
nected or action: disconnect if it is not connected. While
one might intuitively suggest ignoring such messages, this
already requires awareness of the undefined behaviour and a
decision on how to proceed, e. g., forcing a reconnect of the
device. Even if the UE ignores such messages, the eNB may
make different assumptions, leading to desynchronization.

Without a defined behaviour, implementations may assume
these scenarios never to occur or react unpredictably, for exam-
ple, causing the device to crash or leak data. This is because
developers have to speculate on how to correctly implement
the intent of the specification, possibly resulting in wrong
assumptions or mismatching expectations between different
implementations. Our hypothesis is that at least some occur-
rences of undefined behaviour result in security vulnerabili-
ties, making it worthwhile to prevent any misunderstanding in
the first place by ensuring that every behaviour is well-defined
within the specification.



3 Method

Our main goal is to find undefined behaviour in cellular
network specifications, which could potentially introduce
security-critical bugs into UE implementations. To this end,
we propose a method comprising of multiple steps. First,
a human analyst must model the defined behaviour of the
specification, using Temporal Logic of Actions (TLA+) by
Lamport [29]. This task is significantly more intuitive than to
consider all the potentially missing behaviours. Our method
then derives all instances of undefined behaviour from this
model through the extension of the model with an explicit
undefined state. By systematically identifying all transitions
leading to undefined behaviour, we can create a model that
is amenable to model checking. Using a model checker, we
can then synthesize counter examples, each of which proves
the existence of undefined behaviour. As their number can be
high, we further propose a method to find a small number of
representative counter examples. The complete process is vi-
sualised in Figure 4. While these examples can help improve
the specification, we also show how counter examples can be
used to test existing UEs for security vulnerabilities.

3.1 Modelling Challenges
So far, we have illustrated undefined behaviour using a sim-
plified example. When analysing the cellular specification
issued by 3GPP, it becomes clear that identifying undefined
behaviour is a complex task. In particular, we identify three
challenges that we need to take into account when modelling
cellular network specifications.

C1: Relations of PDU and state fields. PDUs contain a
multitude of fields, and these fields are commonly re-
lated to each other or the state of the modelled system,
i. e., the UE. For example, one field might define the
length of another field. To represent defined behaviour,
our approach must account for such relations.

C2: PDU Sequences. Communication between the UE and
eNB typically involves multiple PDUs sent in a sequence
that all relate to each other. For instance, during the con-
nection establishment procedure, multiple handshakes
and information exchanges happen. Another example
is reassembly routines. A popular case is SMS, which
must be fragmented by the sender and reassembled by
the receiver if the SMS’ content exceeds 160 characters.
Therefore, any generalisable approach to model defined
and detect undefined behaviour must be capable of deal-
ing with PDU sequences.

C3: Timers. Many parts of the specification contain timers.
They are commonly used to implement timeouts for
certain procedures, where their expiry triggers a state
change, for instance to reverse any changes made by

the procedure that ran into a timeout. Accounting for
such timeouts is required to preserve the correctness of
a model formalising the specification.
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of counter examples leading to undefined behaviour.

3.2 Modelling Specifications

With these modelling challenges in mind, we discuss how a
human expert can model the 3GPP technical specifications. In
particular, we require that the UE must be capable of storing
an internal state and that this state must be modifiable (C1)
when receiving (multiple) messages (C2) or as time passes
(C3). The state space of our model depends on the modelled
functionality and thus on the set of technical specifications
covered by the model. In the following, we outline how to
model the 3GPP technical specifications based on our simple
running example from Figure 3.

Initial model. The state space of our running ex-
ample contains a single variable which we call s ∈
{Disconnected,Connected}. To define our system’s initial
state, we introduce an initial condition:

Init ≜ s = “Disconnected”

Then, we need to define a next state relation, such that we
can modify the internal state, for instance upon receiving a
message. We formalise the syntax of messages m ∈ M as
follows. Here, [key : vals] denotes a dictionary-like structure
with a key containing a value arbitrarily chosen from vals.
For our running example:



M = [action : {“connect”,“disconnect”}]

We can now model the preconditions for the two possible
state changes shown in Figure 3 as follows:

CanConn(m)≜ m.action = “connect”∧ s = “Disconnected”

CanDiscon(m)≜ m.action = “disconnect”∧ s = “Connected”

This effectively solves challenge C1, as we can relate arbi-
trary PDU fields and state variables using any operation that
is available in first-order logic. We are not bound to simple
comparisons, we can use predicates for counting list lengths,
and we can chain conditions in a functionally complete way.

Updating the state. We now require a way to express an
update to our state s to implement a state change. Importantly,
s is part of the internal state of the model and not an externally
supplied value like the incoming messages m. We denote such
updates using an apostrophe, e. g., s′ = foo assumes that in the
next temporal iteration the state s equals foo. To handle such
a temporal property, we follow TLA+ and use the □[Next]s
construct, which states that each step into the future, satisfies
the relation Next. Intuitively, s′ is renamed to be the new s
with this step. Consequently, our system can be formalised as

DoConn(m)≜s′ = “Connected”

DoDiscon(m)≜s′ = “Disconnected”

Next ≜∃m ∈ M :

(CanConn(m)∧DoConn(m))

∨(CanDiscon(m)∧DoDiscon(m))

Spec ≜Init ∧□[Next]s

In particular, this formalisation allows us to handle se-
quences of arbitrary length. Effectively, the □ operator will
cause the ∃ quantifier to repeatedly draw a new PDU m and
then update the internal state according to the rules set within
the quantifier. This solves challenge C2, and Spec now effec-
tively represents the model introduced in Figure 3.

Modeling timers. To address C3 and introduce support for
timers, we draw from another approach presented by Lam-
port [30]. They model time to be an element in R, which
approximates a continuous dynamical system and allows to
model arbitrary time distances. However, it comes at the price
of computability, as R is non-denumerable and the model
could not be exhaustively computed, even if the time frame
in which the model operates has an upper bound. We observe
that every timer defined in a 3GPP technical specification
is defined in milliseconds or a unit that is a multiple of a
millisecond. Thus, we can discretize our time system into mil-
liseconds and use integers as our basic time unit. We couple
this with an upper bound for system time, such that the amount
of different states is limited and computability is preserved.

Disconnectedstart Connected

Undefined

action: connect

action: disconnect

action: disconnect
action: connect

Figure 5: Extension of our automaton with an explicit Unde-
fined state capturing undefined state transitions (in red).

Formally, we add a new state variable n∈Z0 that represents
the current system time in milliseconds. We also add a new
“Pseudo”-PDU that advances the time, i. e., T = [advance :Z],
and replace the Next state relation as follows:

Next ≜∃m ∈ M∪T :

(CanConn(m)∧DoConn(m))

∨(CanDiscon(m)∧DoDiscon(m))

∨(“advance” ∈ m∧n+m.advance < LIMIT

⇒ n′ = n+m.advance)

This introduces the notion of time into our system. Any
timer is now another state variable ti that is set to the system
time at which the timer expires. Actions taken upon expiry
are then added to the (“advance” ∈ m∧n′ = n+m.advance)
fragment. If TiExpiredAction is the relation to be fulfilled
once a timer i expires at time ti, this can be formalised as:

“advance” ∈ m∧n+m.advance < LIMIT

⇒ (n′ = n+m.advance∧n+m.advance > ti ⇒ TiExpiredAction)

This strategy allows us to model behaviour defined in the
technical specifications, including the relationship between
PDU and state fields (C1), message sequences (C2), and
timers (C3).

3.3 Extracting undefined behaviour

Given the capability to model the technical specification, we
can now focus on how to extend this model to identify unde-
fined behaviour. Our goal is that we can evaluate our model for
unspecified behaviour using a model checker such as tlc [42].
Thus, we need to turn the problem of finding state sequences
leading to undefined behaviour into a model checking prob-
lem. One classic example of such a model checking problem
is to verify if there exists a path into a dangerous state, such
as a crash state. Therefore, we introduce a new state into the
model, which we call the undefined state, and add those tran-
sitions that correspond to PDUs without a defined behaviour.
Figure 5 shows how the additional state and transitions (in
dark red) extend our simple example.



To avoid further manual efforts, we need to automatically
deduce all undefined transitions that lead to this undefined
state. Our insight is that PDUs which do not satisfy any pre-
condition lead to undefined behaviour, allowing us to exhaus-
tively identify all transitions to the undefined state. Translat-
ing this into TLA+ corresponds to adding the conjunction
of all negated preconditions as a precondition of the newly
added undefined state. By construction, the precondition of
the undefined state thus has the form

¬ r1︸︷︷︸
CanConn(m)

∧¬ r2︸︷︷︸
CanDiscon(m)

∧¬ r3︸︷︷︸
“advance”∈m

. . . ∧¬rn.

Notably, this operation is purely a syntactical one for the per-
son writing the model. It does not require that preconditions
are manually interpreted. The presence of the new Undefined
state then allows us to add an invariant, with which we can
then perform classical model checking. Formally, this corre-
sponds to the following and final modification of our next
relation for our simple example in Figure 5.

Next ≜∃m ∈ M∪T :

(CanConn(m)∧DoConn(m))

∨(CanDiscon(m)∧DoDiscon(m))

∨(“advance” ∈ m∧n+m.advance < LIMIT

⇒ n′ = n+m.advance)

∨(¬CanConn(m)∧¬CanDiscon(m)

∧ “advance” /∈ m∧ s′ = “Undefined”)

Invariant ≜s′ ̸= “Undefined”

Finally, we leverage the temporal □(Invariant) operator to
express that we want to ensure that the Invariant is never
violated and arrive at the theorem Spec ⇒□(Invariant) with
Spec ≜ Init∧□[Next]s, which we can check using tlc. More
information on the semantics of the □ operator can be found
in the TLA+ book by Lamport [31, pp. 89].

3.4 Synthesizing Counter Examples
When verifying if the previous theorem holds, the model
checker can either find no violation, indicating the absence
of any undefined behaviour, or find an instance of undefined
behaviour. In this case, it will by design synthesize a counter
example in form of a concrete assignment, i. e., determine a
series of state transitions with corresponding messages m.

Definition 2: Counter example

A counter example is an automatically synthesized invariant
violation of the model. It consists of a sequence of PDUs
that transition the UE from the idle into the undefined state.
It is therefore a representative and concrete, testable sample
of an undefined behaviour.

Without further consideration, this will potentially lead to
the generation of a large number of counter examples. How-

ever, in many of these scenarios, the counter examples will
have a common root cause for undefined behaviour. For exam-
ple, consider the precondition ri ≜ s= foo∧m.x< 2 for PDUs
m ∈ [x : 1..200]. This precondition is false and, thus, leads to
undefined behaviour from state “foo” for any m.x ≥ 2. The
model checker would potentially generate 199 counter exam-
ples for the same root cause of undefined behaviour, leaving
it to a human to realise that they share one root cause. Knowl-
edge about this root cause is, however, required to amend
the specification and specify a behaviour for the state “foo”
and the m.x ≥ 2 case. To assist in this process and avoid the
generation of unnecessary counter examples, we propose the
following technique to add clauses to the Next state relation,
which block PDUs causing already discovered instances of
undefined behaviour.

We find the smallest part of a precondition (ri) that we have
to enforce on generated PDUs, such that the current counter
example PDU sequence is no longer generated, and that does
not cause PDUs that currently lead to defined behaviour to be
no longer generated.

¬ri will then be part of the precondition of the undefined
state, and will have the following structure:

¬ ri︸︷︷︸
s=foo∧m.x<2

= ¬ ci1︸︷︷︸
s=foo

∨¬ ci2︸︷︷︸
m.x<2

We then check each sub-clause ¬ci j that is satisfied by the
undefined behaviour-generating PDU for whether it can be
split up further. This is not the case for our example. If not,
then we check if discarding any PDU that does not satisfy
ci j would lead to any valid PDU being discarded. We cannot
enforce ci1 = foo, as that would mean that the model cannot
ever leave the “foo” state. If so, we move on to the next sub-
clause ci2 . We can also not enforce m.x < 2 as that would
block the generation of messages with m.x ≥ 2 for all states,
including states that are not “foo” and might have a defined
behaviour for such cases. If we can enforce the truthiness of
a sub-clause, it is the defining one for this group of undefined
behaviour, and it will block the generation of PDUs causing
the same undefined behaviour when added as a disjunction
into the ∃ quantifier. If no clause is found, then we back-track
on our downwards recursion and reassemble clauses again,
i. e., instead of checking the individual ci j , we would check the
ri by applying the same criteria. For our example, that means
that ¬(s = foo∧m.x < 2) characterises one group of invalid
input by blocking the generation of any further samples.

This approach follows a similar idea as blocking clauses
used to solve the All-SAT problem [36]. However, in the gen-
eralised All-SAT case, blocking clauses have no relation to
the underlying semantics. As our goal is to group semantically
similar cases of undefined behaviour, we operate on formula
fragments and take into account the order in which the indi-
vidual functionality parts were modelled. Not normalising the
formula ensures that sub-clauses which belong to the same
semantic concepts stay in close proximity to each other within
the formula, as they were likely introduced at the same time.



Inferring semantics via proximity—a property caused by the
manual modelling—thus distinguishes our approach from the
generic All-SAT approach.

The resulting grouping is based on the specification, not
the implementation. Therefore, messages which exhibit the
same undefined behaviour w. r. t. the specification end up in
the same group.

3.5 Testing Implementations
To test UEs implementing the specification, we need to con-
vert the counter example synthesized for each group into one
or more messages. Due to the faithful modelling of PDU
fields, variables in our model can be mapped to concrete
fields. A counter example generated by the model checker
always assigns concrete values to these variables, allowing us
to simply use these assignments for their respective fields and
to generate concrete messages we can test UEs. This way, we
can not only improve the specification but test existing imple-
mentations for security vulnerabilities caused by undefined
behaviour.

We depict the steps to evaluate UE implementations in
Figure 6. It consists of two parts: First, concrete counter ex-
amples are replayed. To do so, the UE under test is connected
to an existing LTE eNB implementation using a Software De-
fined Radio (SDR). We observe the upper layers of the eNB
to determine when the UE awaits our input before starting
to replay the counter example. As the layered architecture of
eNBs ends with an encoding step, we can inject each PDU in
between upper layers and the encoding step.

The second part of this procedure is then to observe and
evaluate UE behaviour. While the modem firmware itself op-
erates as a black box, we utilize two of its external interfaces
to obtain information: The interface between modem and
Android using log monitoring and the radio frequency (RF)
communication by inspecting up- and downlink traffic cap-
tures obtained at the eNB. While monitoring of UE crashes
using these channels is fully automated, detecting more com-
plex vulnerabilities, like information leaks or dangerous state
transitions, requires a human in the loop. Fully automating
this is not possible in general, since – due to the nature of
undefined behaviour – there is no defined, benign behaviour
that we could verify against. Instead, human judgement is
required to identify vulnerabilities.

4 Case Studies

With our approach, we implement several 3GPP technical
specifications in TLA+. This demonstrates that technical spec-
ifications can be formally modelled in isolation, such that
undefined behaviour can be discovered without modelling the
entire specification of a protocol generation.

The criteria for the selection of the modelled specifications
are twofold: First, the technical specifications should relate to
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Figure 6: Procedure to determine if a UE firmware imple-
mentation is vulnerable to an undefined behaviour. Counter
examples are generated according to Figure 4.

Table 1: Summary of undefined behaviours found in PWS,
SMS, and RRC. We report model size, states discovered by
tlc, time in CPU core hours required to compute the state
space, number of undefined behaviours (UBs) found, and the
average number of PDUs needed to reach the undefined state.

Model Lines States CPU hrs. #UBs Avg. #PDUs

PWS 283 13,959,856 85.6 8 1.6
SMS 415 8,676,939 180,000 22 1.3
RRC 731 955 3.3 28 2.7

different functionalities that result in different requirements
w. r. t. the modelling method. Secondly, the modelled function-
alities should exhibit an attack surface via message injection
that does not require that the victim UE is attached to the
network of a compromised MNO, demonstrating the security
impact of the exploitation of undefined behaviour on UEs.

We select three different functionalities, which are detailed
below. Our resulting models are summarised in Table 1.

4.1 Public Warning System (PWS)

Cellular networks support the distribution of emergency mes-
sages, such as warnings of extreme weather conditions. For
scalability reasons, cell broadcasting is implemented by mul-
ticasting (one-to-many) instead of sending messages individ-
ually to each subscriber. In LTE, cell broadcasting is imple-
mented via a specific System Information Block (SIB). The
base station sends various kinds of SIB types to broadcast
meta information such as cell identity and scheduling infor-
mation. In an emergency, the base station uses SIB type 12
to deliver the warning message. The message itself, which
is shown on the UEs display after reception, is transmitted
in a GSM-era encoding for legacy reasons. Each SIB12 also
contains a message identifier that is used for deduplication
and ensures that the same message is not displayed twice.

PWS supports message fragmentation on two layers:
SIB12s can be fragmented on the LTE layer, and the text
can be further fragmented into pages on the “inner” GSM
layer, again for legacy reasons. The reception procedure re-



quires that the individual segments are reassembled on the
LTE level before being forwarded to the GSM message han-
dling procedure [6, pp. 66].

A PWS message is considered to be reassembled if all seg-
ments from segment number 0 to the segment where type is
set to lastSegment have been received. Any LTE message
may contain one or multiple pages, and page reassembly hap-
pens after LTE segment reassembly, such that the GSM pages
are ordered by the segment number of the LTE segment they
were transmitted in.

LTE layer
Segment number: 0

Segment type: 0 (notLastSeg,)

GSM layer
Number of pages: 2

Page: A

LTE layer
Segment number: 1

Segment type: 1 (lastSeg.) 

GSM layer

Page: B

Assembled     message
    AB

Count

Order

Figure 7: Message reassembly of a valid PWS message se-
quence. The segment number determines the order of the
message parts A and B.

Once the message content is passed to the GSM layer, the
individual pages of the PDUs are reassembled. The reassem-
bly process is illustrated in Figure 7, depicting a correct and
valid reassembly sequence.

This use case illustrates two of the previously introduced
challenges. There is an interdependence between the fields
of a PDU, even across layers, for the segment number, type,
the number of pages, and the amount of actually transmitted
pages. In parallel, the model must also account for the internal
state (previously received PDUs) to determine if the newly
received PDU completes a fragmented PWS message or must
be buffered and thus added to the state (C1). In addition, to
even be able to handle reassembly scenarios of multiple PDUs,
as well as to model the deduplication, the model must be
capable of handling sequences of separate PDUs containing
PWS fragments (C2).

Attack surface. As has been shown before [11, 32], SIBs
are not integrity protected against injection into an Over-the-
Air (OTA) data stream. An attacker thus only requires a SDR
in RF range to the victim to send a malicious PWS message
to the UE, as described by Lee et al. [32].

TLA+ Model. Our model of the PWS is based on TS
36.331 [6], release 14. In particular, we implement the pro-
cedure described in section 5.2.2.19, along with the re-
assembly procedure described in section 9.4.3.2.4 of TS
23.041 [3]. As the specification does not make assumptions
about the maximum size of an SIB, we arbitrarily allow two
warningMesageSegments per PDU. While our model sup-
ports all fields introduced in the specification, we decrease the
value range for field contents to boundary values or otherwise

interesting cases, as is common practise [37]. We discuss
resulting potential limitations in Section 6.

The state of the model is the buffer, which is a list of
previously received PDUs awaiting reassembly, a list of mes-
sage identifiers to model the deduplication, along with some
helper variables that store the current sequence and previous
sequences of PDUs, that we use to extract the test case during
counter-example generation.

Results. Model checking the PWS model using tlc
yielded eight different undefined behaviours. To find these,
the model checker explored 13,959,856 distinct states in
5:21 hours on 16 logical CPU cores. Four of the eight unde-
fined behaviours require more than one PDU, with an average
length of 1.6 PDUs per behaviour and a maximum length of
3 PDUs for the longest sequence required to reach undefined
behaviour. From the eight different undefined behaviours, four
lead to a security vulnerability of high or critical severity on
at least one UE, which we describe in detail in Section 5.3,
two were caused by behaviours requiring a PDU sequence.

Human effort. Modelling the PWS functionality took one
person, starting without prior knowledge about the PWS spec-
ification, two weeks to understand the specification and model
the behaviour. Extracting test cases and adjusting the blocking
clause based on the automatically generated model checker
output takes 2-3 minutes per behaviour, such that eight be-
haviours are covered by around 20 minutes of additional man-
ual work after modelling.

4.2 SMS in LTE

SMS over SGs (SG-SMS) reuses GSM PDUs and packs them
into LTE network packets. This allows modem firmware de-
velopers to derive the implementation of SG-SMS from ex-
isting GSM SMS implementation. Contrary to PWS PDUs,
the GSM SMS PDUs are not described in ASN.1, highlight-
ing that our approach is also capable of modelling such non-
standardised specification techniques. The GSM PDU has
numerous fields, of which the most important are the sender’s
and receiver’s phone numbers, the sending timestamp, an op-
tional user data header (used to reassemble SMS that have
been cut off at the 160-character limit), and the SMS text it-
self, the encoding of which is also included in the PDU. SMS,
therefore, is not only an important communication medium
but also has many interdependent fields (C1) and requires
sequences to model message reassembly (C2).

Attack surface. One way to inject malicious SMS PDUs is
to use a modified UE to send the modified PDU to a cellular
network, which then forwards it to the victim. This requires
that the network does not validate the PDU, which is not
an uncommon configuration [34]. Alternatively, an attacker
could also try to inject the data stream into the connection
between the eNB and the UE. That requires that the com-
mercial network is misconfigured to allow disabling or down-
grading the encryption and integrity protection mechanisms,



RRCConnectionRequest
RRCConnectionSetup

SecurityModeCommand
SecurityModeComplete

RRCConnectionSetupComplete

RRCConnectionReconfig.
RRCConnectionReconfigCompl.

En
cr
yp
tio
n

D
at
a

Figure 8: Typical RRC connection procedure. “Encryption”
and “Data” denote the points in time when encryption and IP
connectivity are (optionally) available.

which is the case for some networks, as has been shown by
Chlosta et al. [15].

TLA+ model. is focused on SMS-DELIVER PDUs. There-
fore, we implement the SMS-DELIVER procedure described
in TS 24.301 sections 5.6.3.3 and 9.9.3.22 [7] for protocol
identifiers equalling zero, carrying the CP-/RP-Data PDUs
specified in TS 24.011, section 8.2 [2]. We also adhere to
TS 23.040, sections 3.2.1-3.2.5 and 3.2.10 [4]. We have im-
plemented support for the PDU fields described in 9.2.2.1
and 9.2.3.10 of the same TS. In addition, we support the user
data headers described in 9.2.3.23-24, as they are required for
the reassembly of segmented SMS. The state of the model is
the buffer of unassembled messages, along with the helper
variables already introduced in the PWS model.

Results. Model checking the SMS model using tlc yielded
22 different undefined behaviours. The model checker ex-
plored 8,676,939 distinct states in 75 days on 100 logical
CPU cores to find these. The time difference to the PWS
model is caused by the larger number of fields in SMS PDUs,
which results in a larger number of different PDUs that need
to be checked per state. Six of the 22 undefined behaviours
require two instead of one PDU to be reached.

Human effort. Similarly to the PWS case, modelling the
SMS functionality took one person, starting without prior
knowledge about the SMS specification, 2 weeks to under-
stand the specification and model the behaviour. Extracting
test cases and adjusting the blocking clause based on the auto-
matically generated model checker output takes 2-3 minutes
per behaviour, such that 22 behaviours are covered by around
an hour of additional manual work after modelling.

4.3 Radio Resource Control (RRC)
RRC is a network layer used for communication between
the UE and eNB and is responsible for the configuration of
encryption and integrity protection, as well as mobility man-
agement. A typical handshake between a UE and eNB is
illustrated in Figure 8. It is particularly important to notice

that encryption and data transfer capabilities are not available
from the beginning, and the use of encryption is not manda-
tory once it is available. RRC can also be used by the eNB to
request a UE to connect to another eNB, for instance because
that eNB is in closer proximity to the UE. This handover uses
an internal timer, such that if the handover is not successful
within an amount of time defined within the reconfiguration
request, the UE reconnects to the previous eNB.

Some RRC PDUs are only specified to be sent encrypted
or integrity-protected by the eNB, while the specification
does not define the expected behaviour of a UE receiving
an unencrypted PDU. Furthermore, there exist PDUs such
as RRCReconfigurationRequest that require encryption or
integrity protection depending on the presence of some op-
tional fields within the PDU, such that the UE must first eval-
uate the PDU before deciding if it must be rejected due to
missing integrity protection. This highlights the interdepen-
dence of fields within this functionality (C1). In addition, the
handshake mechanism shown in Figure 8 requires a message
sequence to complete and also enables many potentially un-
defined sequences, such as a connection setup PDU after the
connection is already established (C2), while also demonstrat-
ing that our approach is capable of modelling the diverse set
of used PDU types. Lastly, the handover timer illustrates the
importance of being able to model time (C3).

Attack surface. Since the RRC layer is responsible for
enabling encryption and integrity protection, it cannot rely on
lower layers for these tasks. Injection of RRC messages via
an SDR is thus easily achievable, and the only safeguard is
a careful specification of the protocol itself. Therefore, it is
an integral building block of the security architecture of LTE
and is interesting to any attacker.

TLA+ model. Our TLA+ model is based on TS 36.331 [6],
Chapters 5.3 and 5.5, as well as Appendix A6. We provide
a detailed list in Appendix C. In addition to the actual PDU,
we extend the input space of our model to contain a metadata
structure that specifies the integrity and encryption algorithm
that is used to transmit this message. This gives the model
checking algorithm the opportunity to test if undefined be-
haviour arises when transmitting a message using a mode of
encryption or integrity protection that is unexpected. The state
of our model contains the configured signal and data chan-
nels, the last configured encryption and integrity protection
algorithms, whether there has been a SecurityModeCommand,
the RRC state as defined in the specification (either IDLE or
CONNECTED), the model time, and the expiry time of the afore-
mentioned handover timer. Consequently, we also implement
a “Pseudo” PDU to advance the model’s time state, as de-
scribed in Section 3.2, as well as an upper limit for the model
time.

Results. Using tlc to check the RRC model yielded 28
different undefined behaviours. The model checker explored
955 distinct states in 2 minutes on 100 logical CPU cores to
find these. The large difference in states and, consequently,



CPU time is caused by the very different nature of the RRC
layer. PWS and SMS perform message reassembly, and conse-
quently, each combination and order of received, unassembled
PDUs is a separate state. In contrast, the number of different
bearers, security algorithms and connection state combina-
tions that lead to the overall RRC state is very small and
dominated by the time variable. If we exclude the model time
from the state, the number of different states decreases to 117.

In addition to the 28 undefined behaviours, the model
checker also found two purely theoretical undefined be-
haviours. In these cases, either RRCConnectionRelease or
SecurityModeCommand were to be sent while the UE was in
an IDLE state. However, this is impossible to do in practice,
because at that point the dedicated channel used to transmit
these messages is not yet established. The generation of these
cases is a result of our RRC model being viewed in isola-
tion, i. e., without modelling the lower layers providing the
different channels used to transmit RRC PDUs.

26 of the 28 undefined behaviours require more than one
PDU to be reached, with an average of 2.71 PDUs per be-
haviour and a maximum of 5 PDUs. The greater sequence
length compared to the PWS and SMS models is caused by
most undefined behaviours resulting from a conflicting state
configuration rather than an internal conflict in a single PDU.

Human effort. Since the RRC layer is more complex than
PWS and SMS, understanding its specification and modelling
the specification required more time, which is also reflected
in the larger number of lines of this model. In total, it took
a single person without prior in-depth knowledge of RRC
roughly 3.5 weeks to understand and model this layer. Analo-
gously to the previous cases, modifying the blocking clauses
and extracting the undefined behaviour from tlc output took
required another 1.5 hours in total.

5 Evaluation

We first compare our approach against DoLTEst before
analysing the root causes of undefined behaviour in the speci-
fication. Finally, we investigate how our synthesized messages
can be used to test five commercial phone modems from pop-
ular smartphone vendors.

5.1 Comparison to DoLTEst
Despite DoLTEst’s [37] different goal of testing phone
modems instead of improving the specification, their use of
negative testing draws both from defined but prohibited be-
haviour as well as undefined behaviour to create test cases.
Thus, we can compare against the part of their evaluation in-
vestigating the RRC layer in LTE, which relies on undefined
behaviour. To do so we match the syntactic “Guidelines” used
by DoLTEst to our counter examples and regard cases where
a syntactic guideline matched a PDU in one of our counter
example sequences as found by both approaches.

Table 2: Comparison of our approach to DoLTEst. “Guideline”
refers to Table 5 in [37]. If DoLTEst did not find the behaviour,
the reason is given instead. UNM = Unmodelled by DoLTEst,
INI = Incorrect inital state, SEQ = Requires a sequence, TIM
= Requires Timer.
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RRCConnectionSetup AFTER_SECURITY_ENABLED ✓ ✗ (UNM)
DRB_WITHOUT_SECURITY ✓ ✗ (INI)
SRB2_WITHOUT_SECURITY ✓ ✗ (INI)

RRCConnectionReconfiguration INVALID_DRB_CONFIG ✓ ✓ 1
INVALID_SRB_CONFIG ✓ ✓ 2
UNPROTECTED_MEAS_OBJ_ADD ✓ ✓ 3
UNPROTECTED_REPORT_ADD ✓ ✓ 3
UNPROTECTED_QUANT_CONF ✓ ✓ 3
UNPROTECTED_SPEED_STATE_PARS ✓ ✓ 3
UNPROTECTED_SECURITY_CONFIG ✓ ✓ 4
MOBILITY_CONTROL_NO_DRB ✓ ✗ (SEQ)
MOBILITY_CONTROL_NO_SRB2 ✓ ✗ (SEQ)
NO_CIPHERING_DESPITE_SECURE ✓ ✗ (INI)
NO_INTEGRITY_DESPITE_SECURE ✓ ✗ (INI)
WHILE_T304_RUNNING ✓ ✗ (TIM)

RRCConnectionReestablishment BEFORE_SECURITY ✓ ✗ (INI)

RRCConnectionReject AFTER_SECURITY ✓ ✗ (UNM)

RRCConnectionRelease NO_CIPHERING_DESPITE_SECURE ✓ ✗ (UNM)
NO_INTEGRITY_DESPITE_SECURE ✓ ✓ 5

SecurityModeCommand CIPHER_WITHOUT_INTEGRITY_CONF ✓ ✓ 6
AFTER_SECURITY_ENABLED ✓ ✗ (SEQ)

UECapabilityEnquiry NO_CIPHERING_DESPITE_SECURE ✓ ✗ (UNM)
NO_INTEGRITY_DESPITE_SECURE ✓ ✓ 7

CounterCheckMessage NOT_CIPHERED ✓ ✗ (UNM)
NOT_INTEGRITY_PROTECTED ✓ ✓ 8

UEInformationRequestMessage BEFORE_SECURITY ✓ ✗ (INI)
NO_CIPHERING_DESPITE_SECURE ✓ ✗ (UNM)
NO_INTEGRITY_DESPITE_SECURE ✓ ✓ 9

DLInformationTransfer Not undefined behaviour ✗ ✓ 10

The result of this evaluation is shown in Table 2. Overall,
our approach finds 28 undefined behaviours, while DoLTEst
reports 13. For the DLInformationTransfer PDU, our
approach does not report an undefined behaviour, while
DoLTEst does. Manually investigating the specification (Page
918 of [6] Release 15.10), we find it does not mention that
integrity protection is mandatory, thereby contradicting the
rule set of DoLTEst. Consequently, we consider this a false
positive by DoLTEst.

We now investigate the reasons why our approach found
additional undefined behaviour.

Capabilities. First, our approach generates PDU sequences
that start from the UE being in an IDLE state and thus sets
up the UE state. DoLTEst generates a single message, and
thus requires a single UE state from which the undefined
behaviour needs to be reachable (INI).

Secondly, the authors of DoLTEst require that a connection
to the eNB is established and start their tests from this point.
Our approach allows establishing the state in a sequence of
PDUs, such that undefined behaviour can be caused by the
reception of multiple, dependent PDUs (SEQ).

DoLTEst does not support timers as their state is static and
cannot be updated to simulate the passage of time (TIM).



Unexpected Message Types. We also found that two cases,
related to RRCConnectionReject and RRCConnectionSetup
were not found by DoLTEst because the corresponding Guide-
lines are missing (UNM). We suspect that this is because these
PDUs are not normally used after a phone is connected, as re-
quired by the DoLTEst authors, and they thus did not include
them by accident. This illustrates that an approach where only
defined behaviour needs to be manually modelled and unde-
fined behaviour is synthesized automatically, is advantageous
in finding undefined behaviour in unexpected places because
there is no need to speculate about which PDUs could cause
undefined behaviour while modelling.

In summary, this demonstrates that our approach can not
only find undefined behaviour in previously unstudied func-
tionality but is also able to surpass the state of the art on
testing cellular network protocols.

5.2 Root causes of undefined behaviour

We analyse the root causes that lead to undefined behaviour
in the specification and find three reasons.

Ad-hoc definitions in old specifications. Over time, the
specification procedure has improved, and new techniques
and best practices have been established that promote se-
cure implementations by relying on standardised and easy-
to-implement approaches. However, these improvements are
not back-propagated, as existing specifications and implemen-
tations cannot be modified in a way that would break the
compatibility of existing network equipment. Legacy solu-
tions, such as non-standard protocol parsers thus remain in
use, even though specifications of newer generations of cel-
lular networking protocols solely rely on standardised and
well-defined ASN.1 parsing procedures. Issues in the GSM
specification are related to 5 out of 8 undefined behaviours
discovered by the PWS model and are involved in all 22 un-
defined behaviours in SMS.

Interface between previous and current generation spec-
ifications. Our results show that deep integration of different
protocol generations and underspecification are prone to caus-
ing security vulnerabilities. If information elements in newer
generation PDUs need to be taken into account when process-
ing information elements carried by older generation PDUs,
this appears to increase the chance of undefined behaviour.
In the PWS use case, 3 out of 8 undefined behaviours ex-
pose cases where all PDUs are valid if they are considered in
isolation on either the LTE or the GSM layer, but the infor-
mation on both layers, i. e., regarding the completeness of a
reassembly procedure, are contradicting.

Specifications written from a single perspective. Finally,
undefined behaviour is commonly caused by specifications
that are written from the perspective of a single network com-
ponent. For instance, the RRC specification [6], Release 15.10,
on p. 918 describes the security requirements of RRC mes-
sages as follows: “The following list provides information

which messages can be sent (unprotected) prior to security
activation and which messages can be sent unprotected af-
ter security activation.” However, it does not explain how
a violation is handled on the receiver side, which leads to
widely different interpretations by developers as shown in
Appendix D.

5.3 Security Vulnerabilities

We evaluate our approach using over-the-air testing of five
Commercial Off-The-Shelf (COTS) UEs.

Setup. As the global market for cellular modems is split
between Qualcomm, Samsung LSI, Mediatek, and HiSili-
con [40], we diversify the UEs to test on devices of each
of these manufacturers. Additionally, we test two Mediatek
modems to see how much the results on two modems manu-
factured by the same company differ. Notably, both Mediatek
modems are recent models, albeit the MT6768 only supports
4G, while the MT6853V supports 5G as well.

We employ the method described in Section 3.5, using
srsRAN [18], an open-source implementation of the LTE net-
work, which we operate inside a shielding box using an Ettus
SDR X300 acting as the eNB. The code that implements the
first of the TLA+-generated messages shown in Appendix A
is presented in Appendix B. For each test run, we then send
the selected message sequence to the UE and monitor the UE
via Android Debug Bridge for modem crashes and loss of IP
connectivity, as well as received SMS and PWS messages.
We also obtain a network log from srsRAN. The phone state
is reset between test runs by toggling airplane mode (RRC) or
rebooting the phone (SMS, PWS) and advancing the system
time (PWS) as a measure to counteract deduplication. We
automatically obtain the log files mentioned in Section 3.5
and any unusual behaviour, such as dropped IP connections
and messages with unexpected contents, is later manually
investigated.

Results. We found five undefined behaviours that—
following responsible disclosure—led to confirmed security
vulnerabilities in COTS UEs with assigned CVEs. Table 3
provides an overview. Beyond these cases, undefined be-
haviours often lead to different consequences across smart-
phone modems. A full overview for all undefined behaviours
can be found in Appendix D. In the following, we discuss the
undefined behaviours leading to vulnerabilities.

5.3.1 PWS: Denial of Service against Mediatek modems
(CVE-2022-26446)

We observed three different undefined behaviours leading to
crashes of Mediatek modems, which Mediatek summarised
under CVE-2022-26446 in response to our report. In cases (1)
and (2), the crashes are caused by a sequence of test messages,
while (3) is caused by a single message inducing undefined
behaviour.



Table 3: Selected test cases leading to security-critical behaviour with a CVE assigned. Cell colours indicate the different
behaviours shown by the various phone modems when receiving the message sequence causing the undefined behaviour.

Samsung A41 Oppo A73 5G Huawei P40 Lite 5G Samsung S20 5G OnePlus 8
Undefined behaviour Mediatek MT6768 Mediatek MT6853V HiSilicon Kirin 820 5G Samsung Exynos 990 Qualcomm SM8250

PWS SIB_COMPLETE_BUT_MORE_PAGES CVE-2022-39881
PWS LAST_MESSAGE_BUT_FURTHER_MESSAGES CVE-2022-26446 (1) CVE-2022-26446 (1)
PWS MESSAGE_BEYOND_LAST_SEGMENT CVE-2022-26446 (2) CVE-2022-26446 (2)
PWS EMPTY_WARNING_MESSAGE_SEGMENT CVE-2022-26446 (3) CVE-2022-26446 (3)
SMS GSM7BIT_INCORRECT_USER_DATA_LENGTH CVE-2022-32591

■ Modem crash - ■ Test message and benign messages shown, indications of overflow - ■ Parts of both test messages shown, benign message shown completely
■ Only benign messages shown - ■ Part of one test message shown, benign message shown completely - ■ One test message shown, benign message modified

■ Only a part of one test message shown
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Figure 9: Message reassembly sequence with two undefined
behaviours: Multiple segments signal to be the final segment
(blue, CVE-2022-26446 (1)) and a segment signals comple-
tion on the LTE layer while indicating more pages than trans-
mitted on the GSM layer (orange, CVE-2022-39881).

To verify if all counter examples cause a crash for the same
reason, or if these have different root causes, we performed a
static analysis of the firmware binary extracted from a Sam-
sung A41. Our analysis thus showed that, while the firmware
ultimately crashed because it attempts to read uninitialised ar-
ray or buffer entries, the root cause are three separate cases of
missing input validation: (1) For sequences that lower the seg-
ment number by sending multiple segments that have the last
segment flag, as depicted in Figure 9, and (2) for sequences
which contain segments with higher segment numbers than
initially indicated, along with a case (3) of not accounting for
unforeseen, empty, input. Our synthesizing procedure has suc-
cessfully captured this difference by creating separate counter
examples for each of these categories, helping us to pinpoint
the specification deficiency and assisting the vendor in miti-
gating these issues.

We also noticed that the same crash occurs in both
Mediatek-based phones and developed a tool to parse the
log files generated by the modem firmware. This analysis
showed that the execution traces inferred from the log files
are identical, and we thus assume that both firmware contain
the same code segment for PWS handling.

Impact: The CVE has received a CVS Score of 7.5 (high)
by NIST. Depending on the debug level configured in the
developer menu, the Samsung A41 phone either completely
crashes with a kernel panic or loses all cellular connectivity.
The Oppo phone does not have a developer setting and always
loses cellular connectivity. If the modem crashes and a loss
of cellular connectivity occurs, the Android modem driver

restarts the modem, and connectivity can be re-established.
Consequently, this allows an attacker to perform a DoS attack
either on cellular connectivity or preventing users from using
their phones. Suppose an attacker continuously broadcasts
the corrupted PWS messages. In that case, the DoS persists
across reboots as the modem will immediately crash again
after it has restarted. Cellular modems are also used without
Android drivers, e. g., for industrial applications. If the drivers
used in such applications do not actively restart the modem,
then the DoS attack becomes persistent even if an attacker
only broadcasts the corrupted message once.

5.3.2 PWS: Out of bounds read on Samsung modems
(CVE-2022-39881)

We found an out of bounds memory read vulnerability in Sam-
sung modems that is caused by sending a message with the
lastSegment flag set but that is missing pages on the GSM
layer, as illustrated in Figure 9 via the orange arrow. We ob-
served that the Samsung Exynos-based phone showed a frag-
ment of the test message leading to undefined behaviour. This
should not happen as the corrupted message in this counter
example is incomplete; while the message appears to be com-
pletely received on the LTE layer, it is lacking pages on the
GSM layer. We suspect that the message is “completed” incor-
rectly by reading unrelated data from memory. Upon further
investigation, we discovered that by manually increasing dif-
ferent length denominators in the model-generated, malicious
message, we could read out-of-bounds memory contents.

Impact: The CVE has received a CVS Score of 9.1 (crit-
ical) by NIST. As the exact location of the memory read
cannot be known because it appears to be dynamically al-
located heap memory, exploitation requires techniques like
heap grooming to lead to reliable results. An attacker could
then use it to read arbitrary memory contents. In particular,
given a reliable heap grooming routine, one might be able to
access Packed Data Convergence Protocol (PDCP) session
encryption keys. To exploit this in practice, an attacker would
require physical access to the phone to read the data from the
display or Android debug logs, or needs to find an additional
vulnerability that enables an over-the-air back-channel.



5.3.3 SMS: Denial of Service against Mediatek modems
(CVE-2022-32591)

Another interesting undefined behaviour is
GSM7BIT_INCORRECT_USER_DATA_LENGTH, synthesized
from our SMS model, which lead to a so-called “SMS
of death” attack against Mediatek modems, similar to the
famous Ping of Death attack against Microsoft Windows.

The undefined behaviour results from a length denominator
for the message body being smaller than the body length of the
SMS, as the specification does not provide a rule on truncation.
In the counter example, the difference between the signalled
and the actual body length is one. The Mediatek MT6853
and the Qualcomm modems both react to this in the same
way, i. e., by truncating the affected two-letter test messages
after one letter. A further investigation showed that this test
group appears to reliably crash the Mediatek modem if one
chooses a counter example for this undefined behaviour with
an even smaller “user data length” value, while the Qualcomm
modem ignores the message. This behaviour demonstrates
that implementations may behave differently in the presence
of undefined behaviour, even if it seems to be implemented
in a similar way at first sight. The issue has been confirmed
and was assigned CVE-2022-32591 by Mediatek. Diagnosis
by Mediatek revealed that this bug does not directly crash the
modem but crashes the Mediatek-supplied Radio Interface
Layer (RIL) in Android, which then causes a modem restart
and corrupts debug information.

Interestingly, the Mediatek MT6768 reacts differently to
the GSM7BIT_INCORRECT_USER_DATA_LENGTH counter ex-
ample and only shows the first part of the first malicious
message. We thus speculate that the modem firmware or RIL
developers might have modified the SMS functionality be-
tween the 4G and 5G modem generations. The MT6768 also
does not crash for smaller user data length values.

Impact: The CVE has received a CVS Score of 7.5 (high)
by NIST. The test message that crashed the Mediatek 5G
baseband (CVE-2022-32591) allows an attacker to perform a
DoS-attack by sending a malicious SMS to the victim’s UE.
Depending on the MNO’s network configuration, this could
be potentially done by sending the victim an SMS using a
modified attacker UE. In such a case, this is a low-cost attack
that does not require RF proximity or precise timing.

Since the RIL crash disables cellular connectivity, such an
attack is suitable to prevent a victim from communicating
using their phone, including preventing them from calling
emergency services. Embedded devices affected by this at-
tack will also not be able to communicate anymore if they use
the Android RIL, which is especially problematic for safety-
critical functionalities, such as automatic emergency calls by
cars after an accident or in applications affecting critical in-
frastructure, such as monitoring wind turbines or solar power
plants. In summary, undefined behaviour can have real and
devastating consequences on UEs. Our approach can help

verify whether smartphone modems react in security-critical
ways when facing situations that have not been specified.

6 Discussion

A number of points warrant further discussion.
Human error. Translating the natural-language cellular

network protocol specification into a formal model grounded
in temporal logic is a completely manual step in our process.
This has the drawback that human error in the process of
modelling the specification, such as misinterpretation of the
specification document, might lead to an incorrect model that
does not correspond to it.

Automating the process of model creation would eradi-
cate the potential for human error. However, automating the
process of translating natural language description into a
model grounded in logic via natural language processing is
an unsolved research question; this is a limitation that related
works [12, 37] similar to ours also suffer from. We stress that
our approach attempts to minimize human error by focusing
the task on modelling defined behaviour and not requiring the
human to think about behaviours that are undefined.

Sampling. As the state space of logic models expands expo-
nentially relative to the number of state variables, our models
would become too large to be computed on limited resources.
To counteract this state explosion we sample specific values
such as message identifiers and length specifiers rather than
using their entire permitted value range, as is common in unit
testing and state of the art [37]. For identifiers, this does not
limit the practical capabilities of our model, as we allow more
identifiers than any of our counter examples require. For the
length delimiters, it could become a practical problem, es-
pecially if models become larger and dependencies between
individual length delimiters become more unclear. In these
cases, such issues could be overcome by additional comput-
ing power. The tlc allows for parallel execution on multiple
systems, and therefore larger state spaces become less of a
problem given enough hardware resources.

Model boundaries. In line with previous work [12,37], we
only model subsets of the specification. Modelling specific
parts reduces the manual effort needed and consumes fewer
computation resources. Given the specification’s complexity,
a model of the entire LTE stack would likely be too large
to handle, even when using massively distributed computing
resources. However, we argue that given the real-world attacks
that we found modelling subsets of the specification, it shows
how modelling subsets can improve the specification and find
undefined behaviour.

Relation between undefined behaviour and vulnerabili-
ties. We stress that not every undefined behaviour results in
an implementation vulnerability. This is due to the nature of
undefined behaviour, which represents a lack of a definition,
such that developers may make any assumption, including



both insecure and secure ones. As a consequence, a vulner-
ability may manifest in some, but not all, implementations
simply due to the varying interpretations by different devel-
opers. Crucially, at the specification-level, we cannot predict
with certainty whether a vulnerability will result from unde-
fined behaviour. This is not a limitation regarding our primary
target user group, which is specification bodies and people
involved in the creation of specifications. However, if our
approach is used by developers and pentesters to find imple-
mentation vulnerabilities caused by undefined behaviour, they
require an auxiliary second step to test implementation be-
haviour. Our setup described in Section 3.5 is one way of
handling this issue. Another approach is to manually and stat-
ically analyse behaviour of a given implementation regarding
a PDU that induces undefined behaviour.

Lastly, as undefined behaviour is not the only reason for
security vulnerabilities, eliminating all undefined behaviours
and having a well-defined specification does not guarantee
that implementations will be secure. Additionally, incorrect
implementation of defined behaviour, insecure specifications,
and side channels are other common causes for vulnerabili-
ties, all of which can be addressed by techniques designed to
mitigate such issues.

Industry’s perspective on undefined behaviour. We have
discussed our findings within the GSMA CVD programme. In
their response, CVD panel members pointed out that the speci-
fications’ primary goal is to ensure interoperability. Undefined
behaviour is not generally considered a security issue,if it can
be reasonably expected that an implementor understands how
each undefined behaviour can be implemented in a secure
way. Furthermore, the feedback of some GSMA CVD panel
members mentioned that there is a trade off between writing
specifications in a well-defined manner to promote imple-
mentation security and intentionally permitting undefined
behaviour to enable innovation, differentiation, and subse-
quent competition between implementations. For instance,
undefined behaviour in theory could enable implementers to
use the unspecified areas for optimisations (akin to compilers)
and additional features or differentiate themselves in regard
to implementation quality.

As the features we have investigated leave no room for
additional features or significant optimisations, we, therefore,
believe that this argument does not apply for every undefined
behaviour. Instead, we argue that in many cases, the spec-
ifications should be as strict as possible to promote secure
implementations and protect end users from implementation
vulnerabilities. However, this opens up a new research ques-
tion for future works, namely, identifying such potentially
beneficial undefined behaviour, that might enable optimisa-
tions or additional features.

7 Related Work

Beyond DoLTEst by Park et al. [37], which is closest to our
work, there is a large number of works on modelling cellular
communications using formal verification to validate defined
behaviour [1, 10, 16, 21, 23, 41]. These approaches rely on a
manually created formal model and validate the model against
manually created invariants, representing the specification’s
intention. Similarly, there exists a multitude of attacks based
on specification-based vulnerabilities in various LTE and 5G
features [38, 39]. All of these works focus on finding security
issues in the defined behaviour of the specification and do not
address undefined behaviour.

Some works focus on leveraging the specification to find
security issues in the implementation. They automatically
extract finite state machines from the implementation, using
either source code instrumentation [24] or analysing network
packet captures to recover the internal state [14]. While these
approaches remove the need to manually interpret the spec-
ification, they can only handle scenarios where the model
checking is performed on defined behaviour.

Another set of approaches targeting UE implementations fo-
cuses on validating the positive behaviour defined by the spec-
ification. Kim et al. [25] presented a concept that compares
the PDU parser implementations in UE firmware against the
PDU specifications. Chen et al. [12] validated UE behaviour
against sections of the specification, which are specifically
highlighted using keywords. Kim et al. [26] took a fuzzy
approach to generate test messages from pre-recorded real-
world UE behaviour. Other works validate specific aspects
of eNB and UE implementations in more detail to detect in-
formation leaks [9, 13, 20, 22, 27, 28] or perform normally
prohibited actions [33].

In contrast to the presented approaches, focusing on defined
behaviour or targeting UE implementations, our approach is
the first to enable a systematic evaluation of cellular spec-
ifications regarding undefined behaviour. Furthermore, our
approach uniquely provides formal descriptions of undefined
behaviour, which allows us to systematically eradicate these
issues from the specification.

Recently, there have also been fuzzing approaches targeting
modem firmware, which send messages to real [17] or emu-
lated modems [19, 35] in rapid succession, and monitor them
for crashes or other indicators of malfunction. The systematic
difference between fuzzers and our approach lies in the fact
that fuzzers are designed to identify implementation issues,
but do not exhaustively reason about a given feature. They
also do not apply during the specification stage, as they re-
quire a finished implementation, instead of a specification. As
such, we see fuzzing as orthogonal to our proposed approach.



8 Conclusion

We demonstrate the importance of checking cellular network
specifications for undefined behaviour. Our proposed model-
based approach was able to find 58 cases of undefined be-
haviour in the LTE specifications for PWS, SMS and RRC.
In doing so, we brought forth the dangers of reusing features
from previous generations of cellular network specifications,
and in particular highlighted issues arising at the interface
between the protocol generations.
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A Exemplary TLA+ output

An exemplary test case generated via TLA+, belonging to the
test case group LAST_MESSAGE_BUT_FURTHER_MESSAGES.
The <<elem1 , elem2 , . . . >> nota-
tion refers to a sequence of elements, while
[ key | − > va l , key2 | − > v a l 2 ] refers to a
structure like object. In this particular case, this denotes a
sequence of SIB12 messages to be send sequentially.

Note that both messages contain the last message flag
(warningMessageSegmentTypeR9 is 1). Since the message
segment that arrives first claims to be the second message of
the reassembly sequence, the UE waits for the first message
in the reassembly sequence. When the first message of the
reassembly sequence, which is the second message to be send,
arrives, that message also claims to be the last message. This
is a contradiction to the previously received message and a
case that is not covered by the specification.

<< [ warningMessageSegmentTypeR9 | − > 1 ,
m e s s a g e I d e n t i f i e r R 9 | − > 4370 ,
se r i a lNumberR9 | − > 12289 ,
warningMessageSegmentNumberR9 | − > 2 ,
warningMessageSegmentR9 | − > <<

[ m e s s a g e I n f o r m a t i o n L e n g t h | − > 1]
>> ] ,

[ warningMessageSegmentTypeR9 | − > 1 ,
m e s s a g e I d e n t i f i e r R 9 | − > 4370 ,
se r i a lNumberR9 | − > 12289 ,
warningMessageSegmentNumberR9 | − > 1 ,
warningMessageSegmentR9 | − > <<

[ m e s s a g e I n f o r m a t i o n L e n g t h | − > 1]
>> ]

>>

B Implementation in srsRAN

This code fragment implemenents the first of the two mes-
sages shown in appendix Section A in srsRAN . Integrating it
into the existing SIB scheduling procedure of srsRAN causes
automatic encoding of the message and transfer to the UE
upon the next scheduled SIB window. As the test cases gener-
ated via TLA+ are non-symbolic, the translation from ASN1

to srsRAN is trivial and does, with the exception of replacing
the dummy text, not require substituting symbolic for concrete
values.

s i b 1 2 . s ib12_v920 ( )
. warn ing_msg_segmen t_ type_r9 =

asn1 : : r r c : : s i b _ t y p e 1 2 _ r 9 _ s
: : w a r n i n g _ m s g _ s e g m e n t _ t y p e _ r 9 _ o p t s
: : l a s t _ s e g m e n t ;

s i b 1 2 . s ib12_v920 ( ) . msg_id_r9 =
s i b 1 2 . s ib12_v920 ( ) . msg_id_r9
. from_number ( 4 3 7 0 ) ;

s i b 1 2 . s ib12_v920 ( ) . s e r i a l _ n u m _ r 9 =
s i b 1 2 . s ib12_v920 ( ) . s e r i a l _ n u m _ r 9
. from_number ( 1 2 2 8 9 ) ;

s i b 1 2 . s ib12_v920 ( )
. warning_msg_segment_num_r9 = 2 ;

s i b 1 2 . s ib12_v920 ( ) . warn ing_msg_segment_r9 =
s i b 1 2 _ 2 . s ib12_v920 ( ) . warn ing_msg_segment_r9
. f r o m _ s t r i n g (

" 01<Dummytext o f 1 s e p t e t >01 "
) ;

s i b _ l i s t . push_back ( s i b 1 2 ) ;

C RRC Model Details

For our RRC model, we implement the following down-
link RRC PDUs: RRCConnectionSetup, RRCConnection-
Reconfiguration, SecurityModeCommand, UECapabilityEn-
quiryMessage, CounterCheckMessage, UEInformationRe-
quest, DLInformationTransfer, RRCConnectionReestablish-
ment, RRCConnectionReject, RRCConnectionRelease.

D Non-security-critical Undefined Behaviour

Beyond undefined behaviours leading to security-critical reac-
tions from the UEs, others might be discarded silently or lead
to the display of unintended messages. To analyse whether
the response of the different smartphones differs, we report all
undefined behaviours that led to CVEs in Table 3. Table 4 lists
all undefined behaviours for PWS. Visibly, a large number of
test cases lead to incoherent behaviour. Table 5 reports the
results for SMS, where a number of test cases cause the exact
same behaviour across all smartphones, while others vary sig-
nificantly. Lastly, Table 6 contains undefined behaviours for
RRC. In this case, no messages (such as the warning or SMS)
can be displayed. Instead, we monitor whether the procedure
completes or the connection is reestablished in some way.
As the data shows, behaviour varies between the different
smartphones.



Table 4: Evaluation of test cases generated using the PWS model. Cell colours indicate behaviour shown by the phone. “Seque.”
denotes test cases using message sequences.

Se
qu

e. Samsung A41 Oppo A73 5G Huawei P40 Lite 5G Samsung S20 5G OnePlus 8

Undefined behaviour Mediatek MT6768 Mediatek MT6853V HiSilicon Kirin 820 5G Samsung Exynos 990 Qualcomm SM8250

SEGMENT_0_LACKS_NUM_PAGES
SEGMENT_NON_0_CONTAINS_NUM_PAGES

SIB_COMPLETE_BUT_MORE_PAGES CVE-2022-39881
LAST_MESSAGE_BUT_FURTHER_MESSAGES • CVE-2022-26446 (1) CVE-2022-26446 (1)

MESSAGE_BEYOND_LAST_SEGMENT • CVE-2022-26446 (2) CVE-2022-26446 (2)
TOO_MANY_PAGES •

NUMBER_OF_PAGES_TOO_SMALL •
EMPTY_WARNING_MESSAGE_SEGMENT CVE-2022-26446 (3) CVE-2022-26446 (3)

■ Only benign messages shown - ■ Modem crash - ■ Test message and benign messages shown, indications of overflow
■ One test message shown, benign message modified - ■ Some test messages and some benign messages shown - ■ Incoherent behaviour

Table 5: Evaluation of test cases generated using the SMS model. Cell colours indicate behaviour shown by the phone. “Seque.”
denotes test cases using message sequences.

Se
qu

e. Samsung A41 Oppo A73 5G Huawei P40 Lite 5G Samsung S20 5G OnePlus 8

Undefined behaviour Mediatek MT6768 Mediatek MT6853V HiSilicon Kirin 820 5G Samsung Exynos 990 Qualcomm SM8250

ORIGINATOR_ADDRESS_TOO_SHORT
INCORRECT_RP_USER_DATA_LENGTH

NO_UDH_BODY_LEN_UNEQ_USER_DATA_LEN
DESTINATION_ADDRESS_NOT_EMPTY

NO_UDH_DESPITE_SIGNALLED
UDH_DESPITE_NOT_SIGNALLED

UCS2_INCORRECT_USER_DATA_LENGTH
8BIT_INCORRECT_USER_DATA_LENGTH

GSM7BIT_INCORRECT_USER_DATA_LENGTH CVE-2022-32591
IE0_WITH_NUM_MESSAGES_ZERO

INCORRECT_UDH_LENGTH
IE0_SEQ_NUM_ZERO

IE0_SEQ_NUM_GREATER_NUM_MESSAGES
TIMESTAMP_WITH_INVALID_DIGITS

TIMESTAMP_WITH_MONTH_ZERO
UCS2_ODD_BODY_LENGTH

CONFLICT_MESSAGE_EXISTS •
CONFLICT_NUM_MESSAGES_CHANGED •

INCORRECT_MESSAGE_REFERENCE •
CONFLICT_MORE_MESSAGES_TO_SEND •

CONFLICT_REPLY_PATH •
CONFLICT_ALPHABET •

■ Only benign message shown ■ Both test messages and benign message shown ■ One test message and benign message shown
■ Reassembled test messages and benign message shown ■ Both test messages shown with incorrect character decoding, benign message shown

■ Only a part of one test message shown ■ Parts of both test messages shown, benign message shown completely
■ Part of one test message shown, benign message shown completely

■ Both test messages shown with partially incorrect character decoding, benign message shown correctly

Table 6: Evaluation of test cases generated using the RRC model. Cell colours indicate behaviour shown by the phone. “Seque.”
denotes test cases using message sequences. Details on how we evaluate behaviour can be found in Section 3.5.

Se
qu

e. Samsung A41 Oppo A73 5G Huawei P40 Lite 5G Samsung S20 5G OnePlus 8

Undefined behaviour Mediatek MT6768 Mediatek MT6853V HiSilicon Kirin 820 5G Samsung Exynos 990 Qualcomm SM8250

CounterCheckMessage_NOT_CIPHERED •
CounterCheckMessage_NOT_INTEGRITY_PROTECTED •

RRCConnectionReconfigurationMessage_INVALID_DRB_CONFIG •
RRCConnectionReconfigurationMessage_INVALID_SRB_CONFIG •

RRCConnectionReconfigurationMessage_MOBILITY_CONTROL_NO_DRB •
RRCConnectionReconfigurationMessage_MOBILITY_CONTROL_NO_SRB2 •

RRCConnectionReconfigurationMessage_NO_CIPHERING_DESPITE_SECURE •
RRCConnectionReconfigurationMessage_NO_INTEGRITY_DESPITE_SECURE •

RRCConnectionReconfigurationMessage_UNPROTECTED_MEAS_OBJ_ADD •
RRCConnectionReconfigurationMessage_UNPROTECTED_QUANT_CONF •
RRCConnectionReconfigurationMessage_UNPROTECTED_REPORT_ADD •

RRCConnectionReconfigurationMessage_UNPROTECTED_SECURITY_CONFIG •
RRCConnectionReconfigurationMessage_UNPROTECTED_SPEED_STATE_PARS •

RRCConnectionReconfigurationMessage_WHILE_T304_RUNNING •
RRCConnectionReestablishment_BEFORE_SECURITY •

RRCConnectionReject_AFTER_SECURITY •
RRCConnectionRelease_NO_CIPHERING_DESPITE_SECURE •
RRCConnectionRelease_NO_INTEGRITY_DESPITE_SECURE •
RRCConnectionSetupMessage_AFTER_SECURITY_ENABLED •
RRCConnectionSetupMessage_DRB_WITHOUT_SECURITY
RRCConnectionSetupMessage_SRB2_WITHOUT_SECURITY

SecurityModeCommandMessage_AFTER_SECURITY_ENABLED •
SecurityModeCommandMessage_CIPHER_WITHOUT_INTEGRITY_CONF •
UECapabilityEnquiryMessage_NO_CIPHERING_DESPITE_SECURE •
UECapabilityEnquiryMessage_NO_INTEGRITY_DESPITE_SECURE •

UEInformationRequestMessage_BEFORE_SECURITY •
UEInformationRequestMessage_NO_CIPHERING_DESPITE_SECURE •
UEInformationRequestMessage_NO_INTEGRITY_DESPITE_SECURE •

■ UE signals completion - ■ UE sends a new connection request - ■ UE reestablishes a connection
■ SecurityModeCommand fails ■ PDU(s) ignored ■ Incoherent behaviour
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